1887

Abstract

Previous studies using the nuclear SSU rDNA have indicated that the photosynthetic euglenoids are a monophyletic group; however, some of the genera within the photosynthetic lineage are not monophyletic. To test these results further, evolutionary relationships among the photosynthetic genera were investigated by obtaining partial LSU nuclear rDNA sequences. Taxa from each of the external clades of the SSU rDNA-based phylogeny were chosen to create a combined dataset and to compare the individual LSU and SSU rDNA datasets. Conserved areas of the aligned sequences for both the LSU and SSU rDNA were used to generate parsimony, log-det, maximum-likelihood and Bayesian trees. The SSU and LSU rDNA consistently generated the same seven terminal clades; however, the relationship among those clades varied depending on the type of analysis and the dataset used. The combined dataset generated a more robust phylogeny, but the relationships among clades still varied. The addition of the LSU rDNA dataset to the euglenophyte phylogeny supports the view that the genera , and are not monophyletic and substantiates the existence of several well-supported clades. A secondary structural model for the D2 region of the LSU rDNA was proposed on the basis of compensatory base changes found in the alignment.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/ijs.0.02518-0
2003-07-01
2020-06-02
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/4/ijs531175.html?itemId=/content/journal/jmm/10.1099/ijs.0.02518-0&mimeType=html&fmt=ahah

References

  1. Bourrelly P. 1970; 1. Ordre des Euglénales. In Les Algues d'Eau Douce pp 123–159 Paris: Boubee (in French);
    [Google Scholar]
  2. Bremer K. 1994; Branch support and tree stability. Cladistics 10:295–304 [CrossRef]
    [Google Scholar]
  3. Conrad W. 1934; Matériaux pour une monograpie due genre Lepocinclis Perty. Arch Protistenkd 82:203–249 in French
    [Google Scholar]
  4. Deflandre G. 1930; Strombomonas nouveau genre de l'Euglenacees. Arch Protistenkd 69:551–614 in French
    [Google Scholar]
  5. Donoghue M. J., Olmstead R. G., Smith J. F., Palmer J. D. 1992; Phylogenetic relationships of Dipsacales based on rbcL sequences. Ann MO Bot Gard 79:333–345 [CrossRef]
    [Google Scholar]
  6. Eriksson T. 1998 AutoDecay version 4.0. Program distributed by the author Department of Botany; Stockholm University, Sweden:
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  8. Freshwater D. W., Bailey J. C. 1998; A multigene phylogeny of the Gelidiales including nuclear large-subunit rRNA sequence data. J Appl Phycol 10:229–236 [CrossRef]
    [Google Scholar]
  9. Gockel G., Hachtel W., Baier S., Fliss C., Henke M. 1994; Genes for components of the chloroplast translational apparatus are conserved in the reduced 73-kb plastid DNA of the nonphotosynthetic euglenoid flagellate Astasia longa . Curr Genet 26:256–262 [CrossRef]
    [Google Scholar]
  10. Goff L., Moon D. 1993; PCR amplification of nuclear and plastid genes from algal herbarium specimens and algal spores. J Phycol 29:381–384 [CrossRef]
    [Google Scholar]
  11. Gutell R. R., Larsen N., Woese C. R. 1994; Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev 58:10–26
    [Google Scholar]
  12. Hillis D. M., Huelsenbeck J. P. 1992; Signal, noise, and reliability in molecular phylogenetic analyses. J Hered 83:189–195
    [Google Scholar]
  13. Hollande A. 1952; Classe des Eugléniens (Euglenoidina Butschli, 1884. In Traité de Zoologie vol. 1 pp 238–284Edited by Grassé P. P. Paris: Mason (in French);
    [Google Scholar]
  14. Huber-Pestalozzi G. 1955 Das Phytoplankton des Süsswassers. IV. EuglenophyceenEdited by Thienemann A. Stuttgart: Schweizerbart'sche (in German);
    [Google Scholar]
  15. Huelsenbeck J. P., Ronquist F. 2001; mrbayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755 [CrossRef]
    [Google Scholar]
  16. Kjer K. M. 1995; Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. Mol Phylogenet Evol 4:314–330 [CrossRef]
    [Google Scholar]
  17. Kjer K. M., Blahnik R. J., Holzenthal R. W. 2001; Phylogeny of Trichoptera (caddisflies): characterization of signal and noise within multiple datasets. Syst Biol 50:781–816 [CrossRef]
    [Google Scholar]
  18. Klebs G. 1883; Über die Organization einiger Flagellatengruppen und ihre Beziehungen zu Algen and Infusorien. Untersuchungen Bot Inst Tübingen 1:233–362 in German
    [Google Scholar]
  19. Larsen N. 1992; Higher order interactions of 23S rRNA. Proc Natl Acad Sci U S A 89:5044–5048 [CrossRef]
    [Google Scholar]
  20. Leander B. S., Farmer M. A. 2000; Comparative morphology of the euglenid pellicle. I. Patterns of strips and pores. J Eukaryot Microbiol 47:469–479 [CrossRef]
    [Google Scholar]
  21. Leander B. S., Farmer M. A. 2001a; Comparative morphology of the euglenid pellicle. II. Diversity of strip substructure. J Eukaryot Microbiol 48:202–217 [CrossRef]
    [Google Scholar]
  22. Leander B. S., Farmer M. A. 2001b; Evolution of Phacus (Euglenophyceae) as inferred from pellicle morphology and SSU rDNA. J Phycol 37:143–159 [CrossRef]
    [Google Scholar]
  23. Leander B. S., Triemer R. E., Farmer M. A. 2001; Character evolution in heterotrophic euglenids. Eur J Protistol 37:337–356 [CrossRef]
    [Google Scholar]
  24. Leedale G. F. 1967 Euglenoid Flagellates Englewood Cliffs, NJ: Prentice Hall;
    [Google Scholar]
  25. Linton E. W., Hittner D., Lewandowski C., Auld T., Triemer R. E. 1999; A molecular study of euglenoid phylogeny using small subunit rDNA. J Eukaryot Microbiol 46:217–223 [CrossRef]
    [Google Scholar]
  26. Linton E. W., Nudelman M. A., Conforti V., Triemer R. E. 2000; A molecular analysis of the euglenophytes using SSU rDNA. J Phycol 36:740–746 [CrossRef]
    [Google Scholar]
  27. Lockhart P. J., Steel M. A., Hendy M. D., Penny D. 1994; Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol 11:605–612
    [Google Scholar]
  28. Milanowski R., Zakryś B., Kwiatowski J. 2001; Phylogenetic analysis of chloroplast small-subunit rRNA genes of the genus Euglena Ehrenberg. Int J Syst Evol Microbiol 51:773–781 [CrossRef]
    [Google Scholar]
  29. Miyamoto M. M., Walter M. F. 1995; Testing species phylogenies and phylogenetic methods with congruence. Syst Biol 44:64–76 [CrossRef]
    [Google Scholar]
  30. Montegut-Felkner A. E., Triemer R. E. 1997; Phylogenetic relationships of selected euglenoid genera based on morphological and molecular data. J Phycol 33:512–519 [CrossRef]
    [Google Scholar]
  31. Moreira D., López-García P., Rodríguez-Valera F. 2001; New insights into the phylogenetic position of diplonemids: G+C content bias, differences of evolutionary rate and a new environmental sequence. Int J Syst Evol Microbiol 51:2211–2219 [CrossRef]
    [Google Scholar]
  32. Müllner A. N., Angeler D. G., Samuel R., Linton E. W., Triemer R. E. 2001; Phylogenetic analysis of phagotrophic, phototrophic and osmotrophic euglenoids by using the nuclear 18S rDNA sequence. Int J Syst Evol Microbiol 51:783–791 [CrossRef]
    [Google Scholar]
  33. Nudelman M. A., Rossi M. S., Conforti V., Triemer R. E. 2003; Phylogeny of Euglenophyceae based on small subunit rDNA sequences: taxonomic implications. J Phycol 39:226–235 [CrossRef]
    [Google Scholar]
  34. Palumbi S. R. 1996; Nucleic acids. II. The polymerase chain reaction. In Molecular Systematics , 2nd edn. pp 205–247Edited by Hillis D. M., Moritz C., Mable B. K. Sunderland, MA: Sinauer;
    [Google Scholar]
  35. Playfair G. J. 1921; Australian freshwater flagellates. Proc Linnean Soc NSW 46:99–146
    [Google Scholar]
  36. Pochmann A. 1942; Synopsis der Gattung Phacus . Arch Protistenkd 95:81–252 (in German
    [Google Scholar]
  37. Popova T. G. 1955 Opredelitel Presnovodnych Vodoroslej SSSR vol. 7Euglenovyge Vodorosli Moscow & Leningrad: Sovetskaia Nauka (in Russian;
    [Google Scholar]
  38. Popova T. G. 1966; Flora Sporovyky Rastenij SSSR , vol. 8, Euglenophyta [Gen. Trachelomonas, Strombomonas, Eutreptia, Euglena] . Moscow & Leningrad: Izd; Akademii Nauka (in Russian
  39. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  40. Preisfeld A., Berger S., Busse I., Liller S., Ruppel H. G. 2000; Phylogenetic analyses of various euglenoid taxa (Euglenozoa) based on 18S rDNA sequence data. J Phycol 36:220–226 [CrossRef]
    [Google Scholar]
  41. Preisfeld A., Busse I., Klingberg M., Talke S., Ruppel H. G. 2001; Phylogenetic position and inter-relationships of the osmotrophic euglenoids based on SSU rDNA data, with emphasis on the Rhabdomonadales (Euglenozoa. Int J Syst Evol Microbiol 51:751–758 [CrossRef]
    [Google Scholar]
  42. Schnare M. N., Damberger S. H., Gray M. W., Gutell R. R. 1996; Comprehensive comparison of structural characteristics in eukaryotic cytoplasmic large subunit (23S-like) ribosomal RNA. J Mol Biol 256:701–719 [CrossRef]
    [Google Scholar]
  43. Seimeister G., Hachtel W. 1990; Structure and expression of a gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase ( rbcL ) in the colourless euglenoid flagellate Astasia longa . Plant Mol Biol 14:825–833 [CrossRef]
    [Google Scholar]
  44. Senn G. 1900; Euglenineae. In Die natürlichen Pflanzenfamilien pp 173–185Edited by Engler A., Prantl K. in German
    [Google Scholar]
  45. Smith S. W., Overbeek R., Woese C. R., Gilbert W., Gillevet P. M. 1994; The genetic data environment: an expandable GUI for multiple sequence analysis. Comput Appl Biosci 10:671–675
    [Google Scholar]
  46. Sogin M. L., Gunderson J. H. 1987; Structural diversity of eukaryotic small subunit ribosomal RNAs: evolutionary implications. Ann N Y Acad Sci 573:125–139
    [Google Scholar]
  47. Stein F. R. 1878; Der Organismus der Infusionsthiere . III Abt. Der Organismus der Flagellaten . Leipzig: W. Engelmann (in German);
  48. Stokes A. C. 1885; Some apparently undescribed Infusoria from fresh water. Am Nat 19:18–27 [CrossRef]
    [Google Scholar]
  49. Swofford D. L. 2002 paup*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10 Sunderland, MA: Sinauer;
    [Google Scholar]
  50. Thompson M. D., Copertino D. W., Thompson E., Favreau M. R., Hallick R. B. 1995; Evidence for the late origin of introns in chloroplast genes from an evolutionary analysis of the genus Euglena . Nucleic Acids Res 23:4745–4752
    [Google Scholar]
  51. Woese C. R. 1996; The world of ribosomal RNA. In Ribosomal RNA: Structure, Evolution, Processing, and Function in Protein Biosynthesis pp 23–47Edited by Zimmermann A., Dahlberg A. E. Boca Raton, FL: CRC Press;
    [Google Scholar]
  52. Wuyts J., De Rijk P., Van de Peer Y., Winkelmans T., De Wachter R. 2001; The European large subunit ribosomal RNA database. Nucleic Acids Res 29:175–177 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/ijs.0.02518-0
Loading
/content/journal/jmm/10.1099/ijs.0.02518-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

Supplementary material 4

Supplementary material 5

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error