1887

Abstract

Four strains of thermophilic, endospore-forming, sulfate-reducing bacteria were enriched and isolated from hot solfataric fields in the Krafla area of north-east Iceland, using methanol and sulfite as substrates. Morphologically, these strains resembled thermophilic species. The strains grew with alcohols, including methanol, with glucose and fructose as electron donors, and with sulfate, sulfite or thiosulfate as electron acceptors. For all four strains, the optimum temperature and pH for growth were 60 °C and pH 7·3, respectively; no added NaCl was required. Phylogenetic analysis based on partial 16S rRNA gene sequence comparisons showed high levels of similarity of the novel strains (>92 %) with and . However, DNA–DNA hybridization studies with revealed that the four strains belonged to one novel species. A representative of this group of isolates, strain V21, is proposed as the type strain of a novel species of the spore-forming, sulfate-reducing genus , namely (type strain V21=DSM 14956=CIP 107984).

Loading

Article metrics loading...

/content/journal/jmm/10.1099/ijs.0.02476-0
2003-09-01
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/5/ijs531223.html?itemId=/content/journal/jmm/10.1099/ijs.0.02476-0&mimeType=html&fmt=ahah

References

  1. Beeder J., Torsvik T., Lien T. 1995; Thermodesulforhabdus norvegicus gen. nov., sp. nov. a novel thermophilic sulfate-reducing bacterium from oil field water. Arch Microbiol 164:331–336 [CrossRef]
    [Google Scholar]
  2. Boschker H. T. S., de Brouwer J. F. C., Cappenberg T. E. 1999; The contribution of macrophyte derived organic matter to microbial biomass in salt marsh sediments: stable carbon-isotope analysis of microbial biomarkers. Limnol Oceanogr 44:309–319 [CrossRef]
    [Google Scholar]
  3. Bouchard B., Beaudet R., Villemur R., McSween G., Lépine F., Bisaillon J.-G. 1996; Isolation and characterization of Desulfitobacterium frappieri sp. nov., an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol. Int J Syst Bacteriol 46:1010–1015 [CrossRef]
    [Google Scholar]
  4. Christiansen N., Ahring B. K. 1996; Desulfitobacterium hafniense sp. nov., an anaerobic, reductively dechlorinating bacterium. Int J Syst Bacteriol 46:442–448 [CrossRef]
    [Google Scholar]
  5. Daumas S., Cord-Ruwisch R., Garcia J. L. 1988; Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground water. Antonie van Leeuwenhoek 54:165–178 [CrossRef]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  7. Elsgaard L., Prieur D., Mukwaya G. M., Jørgensen B. B. 1994; Thermophilic sulfate reduction in hydrothermal sediment of Lake Tanganyika, East Africa. Appl Environ Microbiol 60:1473–1480
    [Google Scholar]
  8. Fardeau M. L., Ollivier B., Patel B.-K. C., Dwivedi P., Ragot M., Garcia J. L. 1995; Isolation and characterization of a thermophilic sulfate-reducing bacterium, Desulfotomaculum thermosapovorans sp. nov. Int J Syst Bacteriol 45:218–221 [CrossRef]
    [Google Scholar]
  9. Gerritse J., Renard V., Pedro Gomes T. M., Lawson P. A., Collins M. D., Gottschal J. C. 1996; Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho -chlorinated phenols. Arch Microbiol 165:132–140 [CrossRef]
    [Google Scholar]
  10. Gerritse J., Drzyzga O., Kloetstra G., Keijmel M., Wiersum L. P., Hutson R., Collins M. D., Gottschal J. C. 1999; Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1. Appl Environ Microbiol 65:5212–5221
    [Google Scholar]
  11. Goorissen H. P. 2002; Thermophilic Methanol Utilization by Sulfate Reducing Bacteria . PhD thesis Groningen University; The Netherlands:
  12. Heijthuijsen J. H. F. G., Hansen T. A. 1989; Betaine fermentation and oxidation by marine Desulforomonas strains. Appl Environ Microbiol 55:965–969
    [Google Scholar]
  13. Henry E. A., Devereux R., Maki J. S., Gilmour C. C., Woese C. R., Mandelco L., Schauder R., Rensen C. C., Mitchell R. 1994; Characterization of a new thermophilic sulphate-reducing bacterium Thermodesulfovibrio yellowstonii , gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain. Arch Microbiol 161:62–69 [CrossRef]
    [Google Scholar]
  14. Isaksen M. F., Bak F., Jørgensen B. B. 1994; Thermophilic sulfate reducing bacteria in cold marine sediment. FEMS Microbiol Ecol 14:1–8
    [Google Scholar]
  15. Jørgensen B. B., Bak F. 1991; Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Danmark. Appl Environ Microbiol 57:847–856
    [Google Scholar]
  16. Kuever J., Rainey F. A., Hippe H. 1999; Description of Desulfotomaculum sp. Groll as Desulfotomaculum gibsoniae sp. nov. Int J Syst Bacteriol 49:1801–1808 [CrossRef]
    [Google Scholar]
  17. Liu Y., Karnauchow T. M., Jarrell K. F., Balkwill D. L., Drake G. R., Ringelberg D., Clarno R., Boone D. R. 1997; Description of two new thermophilic Desulfotomaculum spp., Desulfotomaculum putei sp. nov., from a deep terrestrial subsurface, and Desulfotomaculum luciae sp. nov., from a hot spring. Int J Syst Bacteriol 47:615–621 [CrossRef]
    [Google Scholar]
  18. Love C. A., Patel B. K. C., Nicholas P. D., Stackebrandt E. 1993; Desulfotomaculum australicum , sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst Appl Microbiol 16:244–251 [CrossRef]
    [Google Scholar]
  19. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  20. Min H., Zinder S. H. 1990; Isolation and characterization of a thermophilic sulfate-reducing bacterium Desulfotomaculum thermoacetoxidans sp. nov. Arch Microbiol 153:399–404 [CrossRef]
    [Google Scholar]
  21. Nazina T. N., Ivanova A. E., Kanchaveli L. P., Rozanova E. P. 1988; A new spore-forming thermophilic methylotrophic sulfate-reducing bacterium, Desulfotomaculum kuznetsovii sp. nov. Microbiologiya 57:823–827
    [Google Scholar]
  22. Nazina T. N., Turova T. P., Poltaraus A. B., Gryadunov D. A., Ivanova A. E., Osipov G. A., Belyaev S. S. 1999; Phylogenetic position and chemotaxonomic characteristics of the thermophilic sulfate-reducing bacterium Desulfotomaculum kuznetsovii . Microbiology (English translation of Microbiologiya 6892–99
  23. Nilsen R. K., Torsvik T., Lien T. 1996; Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. Int J Syst Bacteriol 46:397–402 [CrossRef]
    [Google Scholar]
  24. Owen R. J., Hill L. R., Lapage S. P. 1961; Determination of DNA-base composition from melting profiles in dilute buffers. Biopolymers 7:503–516
    [Google Scholar]
  25. Pfennig N., Lippert K. D. 1966; Über das vitamin B12-bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55:245–256 [CrossRef]
    [Google Scholar]
  26. Pikuta E., Lysenko A., Suzina N., Osipov G., Kuznetsov B., Tourova T., Akimenko V., Laurinavichius B. 2000; Desulfotomaculum alkaliphilum sp. nov., a new alkaliphilic, moderately thermophilic, sulfate-reducing bacterium. Int J Syst Evol Microbiol 50:25–33 [CrossRef]
    [Google Scholar]
  27. Plugge C. M., Balk M., Stams A. J. M. 2002; Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium. Int J Syst Evol Microbiol 52:391–399
    [Google Scholar]
  28. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  29. Rees G. N., Grassia G. S., Sheehy A. J., Dwivedi P. P., Patel B. K. C. 1995; Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int J Syst Bacteriol 45:85–89 [CrossRef]
    [Google Scholar]
  30. Rosnes J. T., Torsvik T., Lien T. 1991; Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters. Appl Environ Microbiol 57:2302–2307
    [Google Scholar]
  31. Rozanova E. P., Turova T. P., Kolganova T. V., Lysenko A. M., Mitiushina L. L., Iusupov S. K., Beliaev S. S. 2001; Desulfacinum subterraneum sp. nov. – a new thermophilic sulfate-reducing bacterium isolated from a high temperature oil field. Microbiology (English translation of Microbiologiya) 70466–471
    [Google Scholar]
  32. Saitou N., Nei M. 1987; The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  33. Sanford R. A., Cole J. R., Loffler F. E., Tiedje J. M. 1996; Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl Environ Microbiol 64:3800–3808
    [Google Scholar]
  34. Sievert S. M., Kuever J. 2000; Desulfacinum hydrothermale sp. nov., a thermophilic, sulfate-reducing bacterium from geothermally heated sediments near Milos Island (Greece). Int J Syst Evol Microbiol 50:1239–1246 [CrossRef]
    [Google Scholar]
  35. Sleytr U., Adam H., Klaushofer H. 1969; The fine structure of the cell wall and cytoplasmic membrane of Clostridium nigrificans demonstrated by means of freeze etching and chemical fixation techniques. Arch Microbiol 66:40–58
    [Google Scholar]
  36. Sonne-Hansen J., Ahring B. K. 1999; Thermodesulfobacterium hveragerdense sp. nov., and Thermodesulfovibrio islandicus sp. nov., two thermophilic sulfate-reducing bacteria isolated from a Icelandic hot spring. Syst Appl Microbiol 22:559–564 [CrossRef]
    [Google Scholar]
  37. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  38. Stackebrandt E., Sproer C., Rainey F. A., Burghardt J., Pauker O., Hippe H. 1997; Phylogenetic analysis of the genus Desulfotomaculum : evidence for the misclassification of Desulfotomaculum guttoidem and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Bacteriol 47:1134–1139 [CrossRef]
    [Google Scholar]
  39. Stams A. J. M., Veenhuis M., Weenk G. H., Hansen T. A. 1983; Occurrence of polyglucose as a storage polymer in Desulfovibrio species and in Desulfobulbus propionicus . Arch Microbiol 136:54–59 [CrossRef]
    [Google Scholar]
  40. Tardy-Jacquenod C., Caumette P., Matheron R., Lanau C., Arnauld O., Magot M. 1996; Characterization of sulfate-reducing bacteria isolated from oil-field waters. Can J Microbiol 42:259–266 [CrossRef]
    [Google Scholar]
  41. Tasaki M., Kamagata Y., Nakamura K., Mikami E. 1991; Isolation and characterization of a thermophilic benzoate degrading, sulfate-reducing bacterium, Desulfotomaculum thermobenzoicum sp. nov. Arch Microbiol 155:348–352
    [Google Scholar]
  42. Trüper H. G., Schlegel H. G. 1964; Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells of Chromatium okenii . J Microbiol Ser 30:225–238
    [Google Scholar]
  43. Utkin I., Woese C., Wiegel J. 1994; Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov. an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int J Syst Bacteriol 44:612–619 [CrossRef]
    [Google Scholar]
  44. Van de Peer Y., De Wachter R. 1995; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  45. Van der Maarel M. J. E. C., Jansen M., Haanstra R., Meijer W. G., Hansen T. A. 1996; Demethylation of dimethylsulfoniopropionate to 3- S -methylmercaptopropionate by marine sulfate-reducing bacteria. Appl Environ Microbiol 62:3978–3984
    [Google Scholar]
  46. Weijma J. 2000 Methanol as Electron Donor for Thermophilic Biological Sulfate and Sulfite Reduction PhD thesis Wageningen University; The Netherlands:
    [Google Scholar]
  47. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes , 2nd edn. vol 4 pp 3352–3378Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  48. Widdel F., Hansen T. A. 1992; The dissimilatory sulfate- and sulfur-reducing bacteria. In The Prokaryotes , 2nd edn. vol 1 pp 583–624Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  49. Zeikus J. G., Dawson M. A., Thompson T. E., Ingvorsen K., Hatchikian E. C. 1983; Microbial ecology of volcanic sulphidogenesis: isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov. J Gen Microbiol 129:1159–1169
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/ijs.0.02476-0
Loading
/content/journal/jmm/10.1099/ijs.0.02476-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error