colonises a wide range of implanted prosthetic devices, but rarely contact lenses - despite a similarity in material composition. A conceivable explanation for this anomaly is the action of the tear defences, including the constitutive proteins lactoferrin and lysozyme. Therefore this study investigated the effect of lactoferrin, lysozyme and serum on the growth of isolates in artificial tear fluid. Whether supplemented with serum alone or serum with either apolactoferrin or lysozyme, this medium induced a similar, strain-variable effect. However, simultaneous addition of these proteins induced a greater bactericidal or bacteristatic effect. Of those strains killed by the concerted action of apolactoferrin and lysozyme, the absence of serum led to a further increase in the bactericidal effect, whereas strains displaying bacteriostasis were unaffected by serum. Iron saturation of lactoferrin reversed the antimicrobial synergy of apolactoferrin and lysozyme. These results show synergy between lactoferrin and lysozyme which is dependent on the iron limitation of lactoferrin. As a bactericidal mechanism, this synergy is augmented by serum, but bacteriostasis remains unaffected by serum supplemention. Thus, the combination of lysozyme and lactoferrin may partly explain the low level of contact lens colonisation by .


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error