1887

Abstract

The swimming patterns of in environments of low and high viscosity were examined by a video tracking method. In media of low viscosity, swam with an average velocity of 39.3 μm/s with frequent changes in direction. The velocity of increased in a medium at a little higher viscosity than that of a low viscosity buffer. In addition to this, showed a second increase of velocity in media of a high viscosity of about 40 centipoise. The swimming patterns at these two velocity peaks were compared. In the second peak the wild-type exhibited repeated back and forth swimming patterns which were more like the swimming pattern of spirochaetes than that of monotrichous bacteria. Thus may presumably use a different swimming mode in media of high viscosity than the original swimming mode mediated by the propelling force of the flagella. The spiral shape of this bacterium like that of spirochaetes may strongly influence its swimming ability in media of high viscosity such as the mucous layer of the intestinal tract.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-47-6-521
1998-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/47/6/medmicro-47-6-521.html?itemId=/content/journal/jmm/10.1099/00222615-47-6-521&mimeType=html&fmt=ahah

References

  1. Blaser M. J., LaForce F. M., Wilson N. A., Wang W. L. Reservoirs for human campylobacteriosis. J Infect Dis 1980; 141:665–669
    [Google Scholar]
  2. Tauxe R. V. Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations. In Nachamkin I., Blaser M. J., Tompkins L. S. (eds) Campylobacter jejuni-Current status and future trends Washington D. C: American Society for Microbiology; 19929–19
    [Google Scholar]
  3. Walker R. I., Caldwell M. B., Lee E. C., Guerry P., Trust T. J., Ruiz Palacios G. M. Pathophysiology of Campylobacter enteritis. Microbiol Rev 1986; 50:81–94
    [Google Scholar]
  4. Morooka T., Umeda A., Amako K. Motility as an intestinal colonization factor for Campylobacter jejuni. J Gen Microbiol 1985; 131:1973–1980
    [Google Scholar]
  5. Newell D. G., McBride H., Dolby J. M. Investigations on the role of flagella in the colonization of infant mice with Campylo-bacter jejuni and attachment of Campylobacter jejuni to human epithelial cell lines. J Hyg 1985; 95:217–227
    [Google Scholar]
  6. Ueki Y., Umeda A., Fujimoto S., Mitsuyama M., Amako K. Protection against Campylobacter jejuni infection in suckling mice by anti-flagellar antibody. Microbiol Immunol 1987; 31:1161–1171
    [Google Scholar]
  7. Wassenaar T. M., van der Zeijst B. A. M., Ayling R., Newell D. G. Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. J Gen Microbiol 1993; 139:1171–1175
    [Google Scholar]
  8. Takata T., Fujimoto S., Amako K. Isolation of nonchemotactic mutants of Campylobacter jejuni and their colonization of the mouse intestinal tract. Infect Immun 1992; 60:3596–3600
    [Google Scholar]
  9. Macnab R. M. Flagella. In Neidhardt F. C., Ingraham J. L., Low K. B., Magasanik M., Schaechter M., Umbarger H. E. (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology vol 1 Washington D. C: American Society for Microbiology; 198770–83
    [Google Scholar]
  10. Armitage J. P. Behavioral responses in bacteria. Anna Rev Physiol 1992; 54:683–714
    [Google Scholar]
  11. Khan S. Motility. In Krulwich T. A. (ed) The bacteria: a treatise on structure and function New York: Academic Press; 1990301–343
    [Google Scholar]
  12. Macnab R. M. Motility and chemotaxis. In Neidhardt F. C., Ingraham J. L., Low K. B., Magasanik M., Schaechter M., Umbarger H. E. (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology vol 1 Washington, DC: American Society for Microbiology; 1987732–759
    [Google Scholar]
  13. Clamp J. R., Allen A., Gibbons R. A., Roberts G. P. Chemical aspects of mucus. Br Med Bull 1978; 34:25–41
    [Google Scholar]
  14. de Melo M. A., Gabbiani G., Pechѐre J.-C. Cellular events and intracellular survival of Campylobacter jejuni during infection of HEp-2 cells. Infect Immun 1989; 57:2214–2222
    [Google Scholar]
  15. Elsinghorst E. A., Baron L. S., Kopecko D. J. Penetration of human intestinal epithelial cells by Salmonella: molecular cloning and expression of Salmonella typhi invasion determinants in Escherichia coli. Proc Natl Acad Sci USA 1989; 86:5173–5177
    [Google Scholar]
  16. Lee A., O’Rourke J. L., Barrington P. J., Trust T. J. Mucus colonization as a determinant of pathogenicity in intestinal infection by Campylobacter jejuni: a mouse cecal model. Infect Immun 1986; 51:536–546
    [Google Scholar]
  17. McSweegan E., Burr D. H., Waker R. I. Intestinal mucus and secretory antibody are barriers to Campylobacter jejuni adherence to INT 407 cells. Infect Immun 1987; 55:1431–1435
    [Google Scholar]
  18. Ferrero R. L., Lee A. Motility of Campylobacter jejuni in a viscous environment: comparison with conventional rod-shaped bacteria. J Gen Microbiol 1988; 134:53–59
    [Google Scholar]
  19. Schneider W. R., Doetsch R. N. Effect of viscosity on bacterial motility. J Bacteriol 1974; 117:696–701
    [Google Scholar]
  20. Shoesmith J. G. The measurement of bacterial motility. J Gen Microbiol 1960; 22:528–535
    [Google Scholar]
  21. Szymanski C. M., King M., Haardt M., Armstrong G. D. Campylobacter jejuni motility and invasion of Caco-2 cells. Infect Immun 1995; 63:4295–4300
    [Google Scholar]
  22. Shimodori S., Iida K., Kojima F., Takade A., Ehara M., Amako K. Morphological features of a filamentous phage of Vibrio cholerae 0139 Bengal. Microbiol Immunol 1997; 40: (in press)
    [Google Scholar]
  23. Takeya K., Amako K. A rod-shaped Pseudomonas phage. Virology 1966; 28:163–165
    [Google Scholar]
  24. Shigematsu M., Meno Y., Misumi H., Amako K. The measurement of swimming velocity of Vibrio cholerae and Pseudomonas aeruginosa using the video tracking method. Microbiol Immunol 1995; 39:741–744
    [Google Scholar]
  25. Amako K., Umeda A. An improved method for observation of bacterial growth using the scanning electron microscope. J Electron Microsc 1977; 26:155–159
    [Google Scholar]
  26. Greenberg E. P., Canale-Parola E. Motility of flagellated bacteria in viscous environments. J Bacteriol 1977; 132:356–358
    [Google Scholar]
  27. Lowe G., Meister M., Berg H. C. Rapid rotation of flagellar bundles in swimming bacteria. Nature 1987; 325:637–640
    [Google Scholar]
  28. Berg H. C., Turner L. Movement of microorganisms in viscous environments. Nature 1979; 278:349–351
    [Google Scholar]
  29. Fosnaugh K., Greenberg E. P. Motility and chemotaxis of Spirochaeta aurantia: computer-assisted motion analysis. J Bacteriol 1988; 170:1768–1774
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-47-6-521
Loading
/content/journal/jmm/10.1099/00222615-47-6-521
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error