1887

Abstract

The presence of a serotype Enteritidis repeat element (SERE) located within the upstream regulatory region of the operon encoding fimbrial proteins is reported. DNA dot–blot hybridisation analyses and computerised searches of genetic databases indicate that SERE is well conserved and widely distributed throughout the bacterial and archaeal kingdoms. A SERE-based polymerase chain reaction (SERE-PCR) assay was developed to fingerprint 54 isolates of Enteritidis representing nine distinct phage types and 54 isolates of other serotypes. SERE-PCR identified five distinct fingerprint profiles among the 54 Enteritidis isolates; no correlation between phage types and SERE-PCR fingerprint patterns was noticed. SERE-PCR was reproducible, rapid and easy to perform. The results of this investigation suggest that the limited heterogeneity of SERE-PCR fingerprint patterns can be utilised to develop serotype- and serogroup-specific fingerprint patterns for isolates of Enteritidis.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-47-6-489
1998-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/47/6/medmicro-47-6-489.html?itemId=/content/journal/jmm/10.1099/00222615-47-6-489&mimeType=html&fmt=ahah

References

  1. Lupski J. R., Weinstock G. M. Short, interspersed repetitive DNA sequences in prokaryotic genomes. J Bacteriol 1992; 174:4525–4529
    [Google Scholar]
  2. Dimri G. P., Rudd K. E., Morgan M. K., Bayat H., Ames G. F. L. Physical mapping of repetitive extragenic palindromic sequences in Escherichia coli and phylogenetic distribution among Escherichia coli strains and other enteric bacteria. J Bacteriol 1992; 174:4583–4593
    [Google Scholar]
  3. Gilson E., Clѐment J. M., Brutlag D., Hofnung M. A family of dispersed repetitive extragenic palindromic DNA sequences in E. coli. EMBO J 1984; 3:1417–1421
    [Google Scholar]
  4. Higgins C. F., Ames G. F-L., Barnes W. M., Clement J. M., Hofnung M. A novel intercistronic regulatory element of prokaryotic operons. Nature 1982; 298:760–762
    [Google Scholar]
  5. Hulton C. S. J., Higgins C. F., Sharp P. M. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 1991; 5:825–834
    [Google Scholar]
  6. Sharpies G. J., Lloyd R. G. A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes. Nucleic Acids Res 1990; 18:6503–6508
    [Google Scholar]
  7. Martin B., Humbert O., Camara M. A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res 1992; 20:3479–3483
    [Google Scholar]
  8. Versalovic J., Koeuth T., Lupski J. R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 1991; 19:6823–6831
    [Google Scholar]
  9. Versalovic J., Schneider M., De Bruijn F. J., Lupski J. R. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 1994; 5:25–40
    [Google Scholar]
  10. Del Vecchio V. G., Petroziello J. M., Gress M. J. Molecular genotyping of methicillin-resistant Staphylococcus aureus via fluorophore-enhanced repetitive-sequence PCR. J Clin Microbiol 1995; 33:2141–2144
    [Google Scholar]
  11. Versalovic J., Kapur V., Koeuth T. DNA fingerprinting of pathogenic bacteria by fluorophore-enhanced repetitive sequence-based polymerase chain reaction. Arch Pathol Lab Med 1995; 119:23–29
    [Google Scholar]
  12. Versalovic J., Lupski J. R. Distinguishing bacterial and fungal pathogens by repetitive sequence-based PCR (rep-PCR). Lab Medica International 1996; XIII:7–8
    [Google Scholar]
  13. Koeuth T., Versalovic J., Lupski J. R. Differential subsequence conservation of interspersed repetitive Streptococcus pneumoniae BOX elements in diverse bacteria. Genome Res 1995; 5:408–418
    [Google Scholar]
  14. Woese C. R. Bacterial evolution. Microbiol Rev 1987; 51:221–271
    [Google Scholar]
  15. Clouthier S. C., Muller K.-H., Doran J. L., Collinson S. K., Kay W. W. Characterization of three fimbria] genes, sefABC, of Salmonella enteritidis. J Bacteriol 1993; 175:2523–2533
    [Google Scholar]
  16. Clouthier S. C., Collinson S. K., Kay W. W. Unique fimbriae-like structures encoded by sefD of the SEF14 fimbrial gene cluster of Salmonella enteritidis. Mol Microbiol 1994; 12:893–903
    [Google Scholar]
  17. Hunter P. R., Gaston M. A. Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 1988; 26:2465–2466
    [Google Scholar]
  18. Newbury S. F., Smith N. H., Higgins C. F. Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell 1987; 51:1131–1143
    [Google Scholar]
  19. Newbury S. F., Smith N. H., Robinson E. C., Hiles I. D., Higgins C. F. Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell 1987; 48:297–310
    [Google Scholar]
  20. Stem M. J., Ames G. F.-L., Smith N. H., Robinson E. C., Higgins C. F. Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell 1984; 37:1015–1026
    [Google Scholar]
  21. Stem M. J., Prossnitz E., Ames G. F. L. Role of the intercistronic region and post-transcriptional control of gene expression in histidine transport operon of Salmonella typhimurium’. involvement of REP sequences. Mol Microbiol 1988; 2:141–152
    [Google Scholar]
  22. Gilson E., Clement J. M., Perrin S., Hofnung M. Palindromic units: a case of highly repetitive DNA sequences in bacteria. Trends Genet 1987; 3:226–230
    [Google Scholar]
  23. Yang Y., Ames G. F. L-DNA gyrase binds to the family of prokaryotic repetitive extragenic palindromic sequences. Proc Natl Acad Sci USA 1988; 85:8850–8854
    [Google Scholar]
  24. Higgins C. F., McLaren R. S., Newbury S. F. Repetitive extragenic palindromic sequences, mRNA stability and gene expression: evolution by gene conversion? A review. Gene 1988; 72:3–14
    [Google Scholar]
  25. Watt V. M., Ingles C. J., Urdea M. S., Rutter W. J. Homology requirements for recombination in Escherichia coli. Proc Natl Acad Sci USA 1985; 82:4768–4772
    [Google Scholar]
  26. Beltran P., Musser J. M., Helmuth R. Toward a population genetic analysis of Salmonella: genetic diversity and relationships among strains of serotypes S. choleraesuis, S. derby, S. dublin, S. enteritidis, S. heidelberg, S. infantis, S. newport, and S. typhimurium. Proc Natl Acad Sci USA 1988; 85:7753–7757
    [Google Scholar]
  27. Thong K.-L., Ngeow Y.-F., Altwegg M., Navaratnam P., Pang T. Molecular analysis of Salmonella enteritidis by pulsed-field gel electrophoresis and ribotyping. J Clin Microbiol 1995; 33:1070–1074
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-47-6-489
Loading
/content/journal/jmm/10.1099/00222615-47-6-489
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error