1887

Abstract

Seventy isolates of with extended-spectrum β-lactamases (ESBLs) were compared. These were isolated from 51 patients on 10 separate wards in one hospital over an 18-month period between 1992 and 1994. Antibiograms were determined and the isolates were typed by pulsed-field gel electrophoresis of their DNA digestion with I. The isolates were compared to three genotypically different epidemic strains responsible for previous outbreaks at the hospital between 1988 and 1991. Isolates from 84% of the present patients had closely related 1 patterns, and most (74%) produced an ESBL with an iso-electric point (pI) of 7.0. A similar pattern was found for one of the previous epidemic strains, but it produced an ESBL with a pI of 7.8; isolates with this latter enzyme variant were found only in six of the present patients. The two other previous epidemic strains had ESBLs with a pI of 6.3 and organisms related to them were found in one and two of the present patients, respectively.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-47-3-201
1998-03-01
2024-04-12
Loading full text...

Full text loading...

/deliver/fulltext/jmm/47/3/medmicro-47-3-201.html?itemId=/content/journal/jmm/10.1099/00222615-47-3-201&mimeType=html&fmt=ahah

References

  1. Arlet G., Sanson-Le , Pors M. J., Rouveau M. Outbreak of nosocomial infections due to Klebsiella pneumoniae producing SHV-4 beta-lactamase. Eur J Clin Microbiol Infect Dis 1990; 9:797–803
    [Google Scholar]
  2. Bauemfeind A., Rosenthal E., Eberlein E., Holley M., Schweigh-art S. Spread of Klebsiella pneumoniae producing SHV-5 β-lactamase among hospitalized patients. Infection 1993; 21:18–22
    [Google Scholar]
  3. Bingen E. H., Desjardins P., Arlet G. Molecular epidemiology of plasmid spread among extended broad-spectrum β-lactamase-producing Klebsiella pneumoniae isolates in a pediatric hospital. J Clin Microbiol 1993; 31:179–184
    [Google Scholar]
  4. Buré A., Legrand P., Arlet G., Jarlier V., Paul G., Philippon A. Dissemination in five French hospitals of Klebsiella pneumoniae serotype K25 harbouring a new transferable enzymatic resistance to third generation cephalosporins and aztreonam. Eur J Clin Microbiol Infect Dis 1988; 7:780–782
    [Google Scholar]
  5. Johnson A. P., Weinbren M. J., Ayling-Smith B., Du Bois S. K., Amyes S. G. B., George R. C. Outbreak of infection in two UK hospitals caused by a strain of Klebsiella pneumoniae resistant to cefotaxime and ceftazidime. J Hosp Infect 1992; 20:97–103
    [Google Scholar]
  6. Nouvellon M., Pons J.-L., Sirot D., Combe M.-L., Lemeland J.-F. Clonal outbreaks of extended-spectrum β-lactamase-producing strains of Klebsiella pneumoniae demonstrated by antibiotic susceptibility testing, β-lactamase typing, and multilocus enzyme electrophoresis. J Clin Microbiol 1994; 32:2625–2627
    [Google Scholar]
  7. Brun-Buisson C., Legrand P., Philippon A., Montravers F., Ansquer M., Duval J. Transferable enzymatic resistance to third-generation cephalosporins during nosocomial outbreak of multiresistant Klebsiella pneumoniae. Lancet 1987; 2:302–306
    [Google Scholar]
  8. De Champs C., Rouby D., Guelon D. A case-control study of an outbreak of infections caused by Klebsiella pneumoniae strains producing CTX-1 (TEM-3) beta-lactamase. J Hosp Infect 1991; 18:5–13
    [Google Scholar]
  9. Gouby A., Neuwirth C., Bourg G. Epidemiological study by pulsed-field gel electrophoresis of an outbreak of extended-spectrum β-lactamase-producing Klebsiella pneumoniae in a geriatric hospital. J Clin Microbiol 1994; 32:301–305
    [Google Scholar]
  10. Naumovski L., Quinn J. P., Miyashiro D. Outbreak of ceftazidime resistance due to a novel extended-spectrum β-lactamase in isolates from cancer patients. Antimicrob Agents Chemother 1992; 36:1991–1996
    [Google Scholar]
  11. Rice L. B., Willey S. H., Papanicolaou G. A. Outbreak of ceftazidime resistance caused by extended-spectrum β-lactamases at a Massachusetts chronic-care facility. Antimicrob Agents Chemother 1990; 34:2193–2199
    [Google Scholar]
  12. Reish O., Ashkenazi S., Naor N., Samra Z., Merlob P. An outbreak of multiresistant Klebsiella in a neonatal intensive care unit. J Hosp Infect 1993; 25:287–291
    [Google Scholar]
  13. Thompson W., Romance L., Bialkowska-Hobrazanska H., Rennie R. P., Ashton F., Nicolle L. E. Klebsiella pneumoniae infection on a rehabilitation unit: comparison of epidemiologic typing methods. Infect Control Hosp Epidemiol 1993; 14:203–210
    [Google Scholar]
  14. Arlet G., Rouveau M., Casin I., Bouvet P. J. M., Lagrange P. H., Philippon A. Molecular epidemiology of Klebsiella pneumoniae strains that produce SHV-4 β-lactamase and which were isolated in 14 French hospitals. J Clin Microbiol 1994; 32:2553–2558
    [Google Scholar]
  15. Cookson B., Johnson A. P., Azadian B. International inter-and intrahospital patient spread of a multiple antibiotic-resistant strain of Klebsiella pneumoniae. J Infect Dis 1995; 171:511–513
    [Google Scholar]
  16. de Champs C., Sirot D., Chanal C., Poupart M.-C., Dumas M.-P., Sirot J. Concomitant dissemination of three extended-spectrum β-lactamases among different Enterobacteriaceae isolated in a French hospital. J Antimicrob Chemother 1991; 27:441–457
    [Google Scholar]
  17. Kitzis M. D., Billot-Klein D., Goldstein F. W. Dissemination of the novel plasmid-mediated β-lactamase CTX-1, which confers resistance to broad-spectrum cephalosphorins, and its inhibition by β-lactamase inhibitors. Antimicrob Agents Chemother 1988; 32:9–14
    [Google Scholar]
  18. Legakis N. J., Tzouvelekis L. S., Hatzoudis G. Klebsiella pneumoniae infections in Greek hospitals. Dissemination of plasmids encoding an SHV-5 type β-lactamase. J Hosp Infect 1995; 31:177–187
    [Google Scholar]
  19. Petit A., Gerbaud G., Sirot D., Courvalin P., Sirot J. Molecular epidemiology of TEM-3 (CTX-1) β-lactamase. Antimicrob Agents Chemother 1990; 34:219–224
    [Google Scholar]
  20. Prodinger W. M., Fille M., Bauemfeind A. Molecular epidemiology of Klebsiella pneumoniae producing SHV-5 β-lactamase: parallel outbreaks due to multiple plasmid transfer. J Clin Microbiol 1996; 34:564–568
    [Google Scholar]
  21. Sirot J., Chanal C., Petit A., Sirot D., Labia R., Gerbaud G. Klebsiella pneumoniae and other Enterobacteriaceae producing novel plasmid-mediated β-lactamases markedly active against third-generation cepalosporins: epidemiologic studies. Rev Infect Dis 1988; 10:850–859
    [Google Scholar]
  22. Gormann L. J., Sanai L., Notrnan A. W., Grant I. S., Masterton R. G. Cross infection in an intensive care unit by Klebsiella pneumoniae from ventilator condensate. J Hosp Infect 1993; 23:27–34
    [Google Scholar]
  23. Philippon A., Arlet G., Lagrange P. H. Origin and impact of plasmid-mediated extended-spectrum beta-lactamase. Eur J Clin Microbiol Infect Dis 1994; 13: Suppl 1S17–S29
    [Google Scholar]
  24. Soulier A., Barbut F., Ollivier J. M., Petit J. C., Lienhart A. Decreased transmission of Enterobacteriaceae with extended-spectrum β-lactamases in an intensive care unit by nursing reorganization. J Hosp Infect 1995; 31:89–97
    [Google Scholar]
  25. Branger C., Bruneau B., Lesimple A. L. Epidemiological typing of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates responsible for 5 outbreaks in a university hospital. J Hosp Infect 1997; 36:23–37
    [Google Scholar]
  26. Monnet D., Freney J. Method for differentiating Klebsiella planticola and Klebsiella terrigena from other Klebsiella species. J Clin Microbiol 1994; 32:1121–1122
    [Google Scholar]
  27. Communique de l’antibiogramme de la Société Française de Microbiologie Communique 1994 Pathol Biol 1994; 42:I–VIII
    [Google Scholar]
  28. Jarlier V., Nicolas M. H., Fournier G., Philippon A. Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactams in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis 1988; 10:867–878
    [Google Scholar]
  29. Matthew M., Harris A. M., Marshall M. J., Ross G. W. The use of analytical isoelectric focusing for detection and identification of beta-lactamases. J Gen Microbiol 1975; 88:169–178
    [Google Scholar]
  30. Dice L. R. Measures of the amount of ecologic association between species. Ecology 1945; 26:297–302
    [Google Scholar]
  31. Jacoby G. A., Medeiros A. A. More extended-spectrum β-lactamases. Antimicrob Agents Chemother 1991; 35:1697–1704
    [Google Scholar]
  32. Philippon A., Ben Redjeb S., Fournier G., Ben Hassen A. Epidemiology of extended spectrum β-lactamases. Infection 1989; 17:347–354
    [Google Scholar]
  33. Struelens M. J., Deplano A., Godard C., Maes N., Serruys E. Epidemiologic typing and delineation of genetic relatedness of methicillin-resistant Staphylococcus aureus by macrorestriction analysis of genomic DNA by pulsed-field gel electrophoresis. J Clin Microbiol 1992; 30:2599–2605
    [Google Scholar]
  34. Struelens M. J., Schwam V., Deplano A., Baran D. Genome macrorestriction analysis of diversity and variability of Pseudomonas aeruginosa strains infecting cystic fibrosis patients. J Clin Microbiol 1993; 31:2320–2326
    [Google Scholar]
  35. Branger C., Gardye C., Lambert-Zechovsky N. Persistence of Staphylococcus aureus strains among cystic fibrosis patients over periods of time. J Med Microbiol 1996; 45:294–301
    [Google Scholar]
  36. Nicolas M. H., Jarlier V., Honore W., Philippon A., Cole S. T. Molecular characterization of the gene encoding SHV-3 β-lactamase responsible for transferable cefotaxime resistance in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother 1989; 33:2096–2100
    [Google Scholar]
  37. Péduzzi J., Barthélémy M., Tiwari K., Mattioni D., Labia R. Structural features related to hydrolytic activity against ceftazidime of plasmid-mediated SHV-type CAZ-5 β-lactamase. Antimicrob Agents Chemother 1989; 33:2160–2163
    [Google Scholar]
  38. French G. L., Shannon K. P., Simmons N. Hospital outbreak of Klebsiella pneumoniae resistant to broad-spectrum cephalosporins and β-lactam-β-lactamase inhibitor combinations by hyperproduction of SHV-5 β-lactamase. J Clin Microbiol 1996; 34:358–363
    [Google Scholar]
  39. Bradford P. A., Cherubin C. E., Idemyor V., Rasmussen B. E., Bush K. Multiply resistant Klebsiella pneumoniae strains from two Chicago hospitals: identification of the extended-spectrum TEM-12 and TEM-10 ceftazidime-hydrolysing β-lactamases in a single isolate. Antimicrob Agents Chemother 1994; 38:761–766
    [Google Scholar]
  40. Jacoby G. A. Genetics of extended-spectrum beta-lactamases. Eur J Clin Microbiol Infect Dis 1994; 13: Suppl 1S2–S11
    [Google Scholar]
  41. Philippon A., Fournier G., Paul G., Vedel G., Nevot P. Detection et distribution des beta-lactamases à spectre élargi chez les enterobacteries. Med Mai Infect 1988; 12:869–876
    [Google Scholar]
  42. Selden R., Lee S., Wang W. L. L., Bennet J. V., Eickoff T. C. Nosocomial klebsiella infections: intestinal colonization as a reservoir. Ann Intern Med 1971; 74:657–664
    [Google Scholar]
  43. Brun-Buisson C., Legrand P., Raus A. Intestinal decontamination for control of nosocomial multiresistant gram-negative bacilli, study of an outbreak in an intensive care unit. Ann Intern Med 1989; 110:873–881
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-47-3-201
Loading
/content/journal/jmm/10.1099/00222615-47-3-201
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error