1887

Abstract

Summary

The sequence of the non-typable (NTHi) P5 outer-membrane protein from a range of clinical isolates is presented and represents the first analysis of the heterogeneity in P5 from NTHi isolates from diverse anatomical sites. the basis of the previously observed inter-strain variation in the electrophoretic mobility is attributed to heterogeneity in three hypervariable regions. Alignment of the P5 sequences identified regions which are highly conserved and align with the transmembrane region predicted for the homologous protein, OmpA. Variable regions correspond to surface-exposed loops, of which the first loop falls into subclasses. However, these subclasses fail to correlate with anatomical predisposition. Although P5 has been proposed as a fimbrial protein composed of coiled coils, both structural analysis by circular dichroism of purified P5 and computer analysis of the multiply aligned sequences predict a high proportion of β strand with no evidence of coiled coil structure. A detailed model of P5 is presented.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-47-12-1059
1998-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/47/12/medmicro-47-12-1059.html?itemId=/content/journal/jmm/10.1099/00222615-47-12-1059&mimeType=html&fmt=ahah

References

  1. Kilian M., Heine-Jensen J., Bülow P. Haemophilus in the upper respiratory tract of children. A bacteriological, serological and clinical investigation. Acta Pathol Microbiol Scand B. Microbiol Immunol 1972; 80:571–578
    [Google Scholar]
  2. Murphy T. F., Apicella M. A. Nontypable Haemophilus influenzae: a review of clinical aspects, surface antigens, and the human immune response to infection. Rev Infect Dis 1987; 9:1–15
    [Google Scholar]
  3. Turk D. C. The pathogenicity of Haemophilus influenzae. J Med Microbiol 1984; 18:1–16
    [Google Scholar]
  4. Groeneveld K., van Alphen L., Eijk P. P., Jansen H. M., Zanen H. C. Changes in outer membrane proteins of nontypable Haemophilus influenzae in patients with chronic obstructive pulmonary disease. J Infect Dis 1988; 158:360–365
    [Google Scholar]
  5. van Alphen L., Caugant D. A., Duim B., O’Rourke M., Bowler L. D. Differences in genetic diversity of nonencapsulated Haemophilus influenzae from various diseases. Microbiology 1997; 143:1423–1431
    [Google Scholar]
  6. Duim B., Bowler L. D., Eijk P. P., Jansen H. M., Dankert J., van Alphen L. Molecular variation in the major outer membrane protein P5 gene of nonencapsulated Haemophilus influenzae during chronic infections. Infect Immun 1997; 65:1351–1356
    [Google Scholar]
  7. Sirakova T., Kolattukudy P. E., Murwin D. Role of fimbriae expressed by nontypeable Haemophilus influenzae in pathogenesis of and protection against otitis media and relatedness of the fimbrin subunit to outer membrane protein A. Infect Immun 1994; 62:2002–2020
    [Google Scholar]
  8. Reddy M. S., Bernstein J. M., Murphy T. F., Faden H. S. Binding between outer membrane proteins of nontypeable Haemophilus influenzae and human nasopharyngeal mucin. Infect Immun 1996; 64:1477–1479
    [Google Scholar]
  9. Miyamoto N., Bakaletz L. O. Selective adherence of non-typeable Haemophilus influenzae (NTHi) to mucus or epithelial cells in the chinchilla Eustachian tube and middle ear. Microb Pathog 1996; 21:343–356
    [Google Scholar]
  10. Munson R. S., Grass S., West R. Molecular cloning and sequence of the gene for outer membrane protein P5 of Haemophilus influenzae. Infect Immun 1993; 61:4017–4020
    [Google Scholar]
  11. Hu N., Messing J. The making of strand-specific M13 probes. Gene 1982; 17:271–277
    [Google Scholar]
  12. Sambrook J., Fritsch E. F., Maniatis T. Molecular cloning: a laboratory manual. 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989
    [Google Scholar]
  13. Sanger F., Nicklen S., Coulsen A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467
    [Google Scholar]
  14. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 1984; 12:387–395
    [Google Scholar]
  15. Mehta P. K., Heringa J., Argos P. A simple and fast approach to prediction of protein secondary structure from multiply aligned sequences with accuracy above 70%. Protein Sci 1995; 4:2517–2525
    [Google Scholar]
  16. Lupas A., van Dyke M., Stock J. Predicting coiled coils from protein sequences. Science 1991; 252:1162–1164
    [Google Scholar]
  17. Carlone G. M., Thomas M. L., Rumschlag H. S., Sottnek F. O. Rapid microprocedure for isolating detergent-insoluble outer membrane proteins from Haemophilus species. J Clin Microbiol 1986; 24:330–332
    [Google Scholar]
  18. Munson R. S., Granoff D. M. Purification and partial characterization of outer membrane proteins P5 and P6 from Haemophilus influenzae type b. Infect Immun 1985; 49:544–549
    [Google Scholar]
  19. Provencher S. W., Glӧckner J. Estimation of globular protein secondary structure from circular dichroism. Biochemistry 1981; 20:33–37
    [Google Scholar]
  20. Fleischmann R. D., Adams M. D., White O. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995; 269:496–512
    [Google Scholar]
  21. Mowa N. R., Nakamura K., Inouye M. Gene structure of the OmpA protein, a major surface protein of Escherichia coli required for cell-cell interaction. J Mol Biol 1980; 143:317–328
    [Google Scholar]
  22. Sugawara E., Steiert M., Rouhani S., Nikaido H. Secondary structure of the outer membrane proteins OmpA of Escherichia coli and OprF of Pseudomonas aeruginosa. J Bacteriol 1996; 178:6067–6069
    [Google Scholar]
  23. Dale J. B., Chiang E. Y., Lederer J. W. Recombinant tetravalent group A Streptococcal M protein vaccine. J Immunol 1993; 151:2188–2194
    [Google Scholar]
  24. Koebnik R. Proposal for a peptidoglycan-associating alpha-helical motif in the C-terminal regions of some bacterial cell-surface proteins. Mol Microbiol 1995; 16:1269–1270
    [Google Scholar]
  25. Vogel H., Jӓhnig F. Models for the structure of outer-membrane proteins of Escherichia coli derived from raman spectroscopy and prediction methods. J Mol Biol 1986; 190:191–199
    [Google Scholar]
  26. Prasadarao N. V., Wass C. A., Kim K. S. Endothelial cell GlcNAcβ1-4GlcNAc epitopes for outer membrane protein A enhance traversal of Escherichia coli across the blood-brain barrier. Infect Immun 1996; 64:154–160
    [Google Scholar]
  27. Prasadarao N. V., Wass C. A., Weiser J. N., Stins M. F., Huang S.-H., Kim K. S. Outer membrane protein A of Escherichia coli contributes to invasion of brain microvascular endothelial cells. Infect Immun 1996; 64:146–153
    [Google Scholar]
  28. O’Shea E. K., Rutkowski R., Kim P. S. Evidence that the leucine zipper is a coiled coil. Science 1989; 243:538–542
    [Google Scholar]
  29. Cohen C., Parry D. A. D. α-helical coiled coils and bundles: how to design an α-helical protein. Proteins Struct Funct Genet 1990; 7:1–15
    [Google Scholar]
  30. Phillips G. N., Flicker P. F., Cohen C., Manjula B. N., Fischetti V. A., Streptococcal M. protein: α-helical coiled-coil structure and arrangement on the cell surface. Proc Natl Acad Sci USA 1981; 78:4689–4693
    [Google Scholar]
  31. Hultgren S. J., Abraham S., Caparon M., Falk P., St Geme J. W., Normark S. Pilus and nonpilus bacterial adhesins: assembly and function in cell recognition. Cell 1993; 73:887–901
    [Google Scholar]
  32. Weiss M. S., Abele U., Weckesser J., Welte W., Schiltz E., Schulz G. E. Molecular architecture and electrostatic properties of a bacterial porin. Science 1991; 254:1627–1630
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-47-12-1059
Loading
/content/journal/jmm/10.1099/00222615-47-12-1059
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error