1887

Abstract

Toxigenic is isolated from a majority of healthy human infants. The exact mechanism of asymptomatic colonisation is unclear; however, previous studies in this laboratory have shown that components of both the immunoglobulin and non-immunoglobulin fractions of human milk bind to toxin A and prevent its interaction with hamster intestinal brush border membranes (BBMs). Secretory IgA (sIgA) is the primary immunoglobulin found in human milk. As sIgA resists digestion in the infant stomach and passes at high levels into the colon, its ability to bind toxin A was the subject of this investigation. Purified sIgA in concentrations at and below those found in human milk inhibited the binding of toxin A to purified BBM receptors. Heating sIgA to 100° for 5 min did not affect its inhibitory activity. IgM, IgG and serum IgA did not appreciably inhibit the binding of toxin A to BBM receptors. SDS-PAGE separated sIgA into three major bands: secretory component, heavy chains and light chains. Autoradiography with radiolabelled toxin A revealed that toxin A bound to the secretory component (SC) of sIgA. When the three purified subunits of sIgA were coated on to microtitration wells, SC bound significantly more toxin A than the heavy or light chains of sIgA. Purified SC also inhibited toxin binding to receptors in a dose-dependent fashion similar to sIgA. The heavy and light chains of sIgA did not inhibit toxin A receptor binding. Removing carbohydrates from sIgA and SC by enzymic digestion showed that toxin A binds much less to deglycosylated SC than to glycosylated SC. These data suggest that SC in human milk binds to toxin A and may function as a receptor analogue, protecting human infants against -associated disease.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-47-10-879
1998-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/47/10/medmicro-47-10-879.html?itemId=/content/journal/jmm/10.1099/00222615-47-10-879&mimeType=html&fmt=ahah

References

  1. Bartlett J. G. Clostridium difficile: history of its role as an enteric pathogen and the current state of knowledge about the organism. Clin Infect Dis 1994; 18: (Suppl 4) S265–272
    [Google Scholar]
  2. Bennett R. G. Clostridium difficile infection in the elderly. In Rambaud J.-C., LaMont J. T. (eds) Updates on Clostridium difficile Paris: Springer-Verlag; 199615–27
    [Google Scholar]
  3. LaMont T. J. Recent advances in the structure and function of Clostridium difficile toxins. In Rambaud J.-C., LaMont T. J. (eds) Updates on Clostridium difficile Paris: Springer-Verlag; 199673–82
    [Google Scholar]
  4. Moncrief J. S., Lyerly D. M., Wilkins T. D. Molecular biology of the Clostridium difficile toxins. In Rood J. I., McClane B. A., Songer J. G., Titball R. W. (eds) The Clostridia: molecular biology and pathogenesis San Diego: Academic Press; 1997369–392
    [Google Scholar]
  5. Kelly C. P., Becker S., Linevsky J. K. Neutrophil recruitment in Clostridium difficile toxin A enteritis in the rabbit. J Clin Invest 1994; 93:1257–1265
    [Google Scholar]
  6. Lyerly D. M., Wilkins T. D. Purification and properties of toxins A and B of Clostridium difficile. In Rolfe R. D., Finegold S. M. (eds) Clostridium difficile: its role in intestinal disease San Diego: Academic Press; 1988145–167
    [Google Scholar]
  7. Clark G. F., Krivan H. C., Wilkins T. D., Smith D. F. Toxin A from Clostridium difficile binds to rabbit erythrocyte glycolipids with terminal Galα1-3Galß1-4GlcNAc sequences. Arch Biochem Biophys 1987; 257:217–229
    [Google Scholar]
  8. Krivan H. C., Clark G. F., Smith D. F., Wilkins T. D. Cell surface binding site for Clostridium difficile enterotoxin: evidence for a glycoconjugate containing the sequence Galα1-3Galß1-4-GlcNAc. Infect Immun 1986; 53:573–581
    [Google Scholar]
  9. Rolfe R. D. Binding kinetics of Clostridium difficile toxins A and B to intestinal brush border membranes from infant and adult hamsters. Infect Immun 1991; 59:1223–1230
    [Google Scholar]
  10. Rolfe R. D., Song W. Purification of a functional receptor for Clostridium difficile toxin A from intestinal brush border membranes of infant hamsters. Clin Infect Dis 1993; 16: (Suppl 4) S219–S227
    [Google Scholar]
  11. Wolfhagen M. J. H. M., Torensma R., Fluit A. C., Aarsman C. J. M., Jansze M., Verhoef J. Multivalent binding of toxin A from Clostridium difficile to carbohydrate receptors. Toxicon 1994; 32:129–132
    [Google Scholar]
  12. Tucker K. D., Wilkins T. D. Toxin A of Clostridium difficile binds to the human carbohydrate antigens I, X, and Y. Infect Immun 1991; 59:73–78
    [Google Scholar]
  13. Cooperstock M. Clostridium difficile in infants and children. In Rolfe R. D., Finegold S. M. (eds) Clostridium difficile: its role in intestinal disease San Diego: Academic Press; 198845–64
    [Google Scholar]
  14. Nash J. Q., Chattopadhyay B., Honeycombe J., Tabaqchali S. Clostridium difficile and cytotoxin in routine faecal specimens. J Clin Pathol 1982; 35:561–565
    [Google Scholar]
  15. Stark P. L., Lee A., Parsonage B. D. Colonization of the large bowel by Clostridium difficile in healthy infants: quantitative study. Infect Immun 1982; 35:895–899
    [Google Scholar]
  16. Cooperstock M., Riegle L., Woodruff C. W., Onderdonk A. Influence of age, sex, and diet on asymptomatic colonization of infants with Clostridium difficile. J Clin Microbiol 1983; 17:830–833
    [Google Scholar]
  17. Rolfe R. D., Dallas S. D. Investigations into the mechanisms of asymptomatic intestinal colonization of infants by toxigenic Clostridium difficile. Microecology Therapy 1995; 25:209–222
    [Google Scholar]
  18. Rolfe R. D., Iaconis J. P. Intestinal colonization of infant hamsters with Clostridium difficile. Infect Immun 1983; 42:480–486
    [Google Scholar]
  19. Kim K., Pickering L. K., DuPont H. L., Sullivan N., Wilkins T. In vitro and in vivo neutralizing activity of human colostrum and milk against purified toxins A and B of Clostridium difficile. J Infect Dis 1984; 150:57–62
    [Google Scholar]
  20. Crane J. K., Azar S. S., Stam A., Newburg D. S. Oligosaccharides from human milk block binding and activity of the Escherichia coli heat-stable enterotoxin (Sta) in T84 intestinal cells. J Nutr 1994; 124:2358–2364
    [Google Scholar]
  21. Giugliano L. G., Ribeiro S. T. G., Vainstein M. H., Ulhoa C. J. Free secretory component and lactoferrin of human milk inhibit the adhesion of enterotoxigenic Escherichia coli. J Med Microbiol 1995; 42:3–9
    [Google Scholar]
  22. Laegreid A., Kolst Otnaess A.-B. Trace amounts of ganglioside GM1 in human milk inhibit enterotoxins from Vibrio cholerae and Escherichia coli. Life Sci 1987; 40:55–62
    [Google Scholar]
  23. Rolfe R. D., Song W. Immunoglobulin and non-immunoglobulin components of human milk inhibit Clostridium difficile toxin A-receptor binding. J Med Microbiol 1995; 42:10–19
    [Google Scholar]
  24. Bjork I., Lindh E. Gross conformation of human secretory immunoglobulin A and its component parts. Eur J Biochem 1974; 45:135–145
    [Google Scholar]
  25. Eiffert H., Quentin E., Wiederhold M. Determination of the molecular structure of the human free secretory component. Biol Chem Hoppe Seyler 1991; 372:119–128
    [Google Scholar]
  26. Fallgreen-Gebauer E., Gebauer W., Bastian A. The covalent linkage of secretory component to IgA. Structure of sIgA. Biol Chem Hoppe Seyler 1993; 374:1023–1028
    [Google Scholar]
  27. Tomasi T. B. Structure and function of mucosal antibodies. Annu Rev Med 1970; 21:281–298
    [Google Scholar]
  28. Ogra S. S., Ogra P. L. Immunologic aspects of human colostrum and milk. I. Distribution characteristics and concentrations of immunoglobulins at different times after the onset of lactation. J Pediatr 1978; 92:546–549
    [Google Scholar]
  29. Mizoguchi A., Mizuochi T., Kobata A. Structures of the carbohydrate moieties of secretory component purified from human milk. J Biol Chem 1982; 257:9612–9621
    [Google Scholar]
  30. Davidson L. A., Lonnerdal B. Persistence of human milk proteins in the breast-fed infant. Acta Paediatr Scand 1987; 76:733–740
    [Google Scholar]
  31. Eschenburg G., Heine W., Peters E. [Fecal sIgS and lysozyme excretion in breast feeding and formula feeding.]. Kinderarztlh Prax 1990; 58:255–260
    [Google Scholar]
  32. Goldman A. S. The immune system of human milk: antimicrobial, antinflammatory and immunomodulating properties. Pediatr Infect Dis J 1993; 12:664–671
    [Google Scholar]
  33. Jatsyk G. V., Kuvaeva I. B., Gribakin S. G. Immunological protection of the neonatal gastrointestinal tract: the importance of breast feeding. Acta Paediatr Scand 1985; 74:246–249
    [Google Scholar]
  34. Brown J. G. Physiology of toxin A production by Clostridium difficile. Doctoral dissertation, Texas Tech University Health Sciences Center; 199111–13
    [Google Scholar]
  35. Krivan H. C., Wilkins T. D. Purification of Clostridium difficile toxin A by affinity chromatography on immobilized thyroglobulin. Infect Immun 1987; 55:1873–1877
    [Google Scholar]
  36. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with Folin phenol reagent. J Biol Chem 1951; 193:265–275
    [Google Scholar]
  37. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  38. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 1979; 76:4350–4354
    [Google Scholar]
  39. Abramovitz A. Preparative electrophoresis in the SE 600 vertical slab unit: a simple modification. Hoefer Scientific Instmments technical bulletin 1990#116
    [Google Scholar]
  40. Ammann A. J., Stiehm E. R. Immune globulin levels in colostrum and breast milk, and serum from formula and breast-fed newborns. Proc Soc Exp Biol Med 1966; 122:1098–1100
    [Google Scholar]
  41. Onderdonk A. B. Role of the hamster model of antibiotic-associated colitis in defining the etiology of the disease. In Rolfe R. D., Finegold S. M. (eds) Clostridium difficile: its role in intestinal disease San Diego: Academic Press; 1988115–125
    [Google Scholar]
  42. Underdown B. J., DeRose J., Koczekan K., Socken D., Weicker J. Isolation of human secretory component by affinity chromatography on IgM-sepharose. Immunochemistry 1977; 14:111–118
    [Google Scholar]
  43. Prentice A., Ewing G., Roberts S. B. The nutritional role of breast-milk IgA and lactoferrin. Acta Paediatr Scand 1987; 76:592–598
    [Google Scholar]
  44. Sabharwal H., Sjoblad S., Lundblad A. Sialylated oligosaccharides in human milk and feces of preterm, full-term, and weanling infants. J Pediatr Gastroenterol Nutr 1991; 12:480–484
    [Google Scholar]
  45. Whyte R. K., Homer R., Pennock C. A. Faecal excretion of oligosaccharides and other carbohydrates in normal neonates. Arch Dis Child 1978; 53:913–915
    [Google Scholar]
  46. Cheng S. H. Inhibition of C. difficile toxin A receptor binding by cow’s milk, cow’s formula, and soy formula. Masters thesis Texas Tech University Health Sciences Center; 1996
    [Google Scholar]
  47. Surawicz C. M. Updates on the management of Clostridium difficile associated intestinal disease. In Rambaud J.-C., LaMont J. T. (eds) Updates on Clostridium difficile Paris: Springer-Verlag; 1996105–115
    [Google Scholar]
  48. Buts J. P., Bemasconi P., Vaerman J. P., Dive C. Stimulation of secretory IgA and secretory component of immunoglobulins in small intestine of rats treated with Saccharomyces boulardii. Dig Dis Sci 1990; 35:251–256
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-47-10-879
Loading
/content/journal/jmm/10.1099/00222615-47-10-879
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error