1887

Abstract

Resistance to macrolides and lincosamides in has been shown to be encoded by a 4.0-kb plasmid designated pSES21. It differed distinctly in its restriction map from all other staphylococcal macrolide resistance plasmids reported so far. Southern blot hybridisation with gene probes specific for staphylococcal genes demonstrated that the macrolide resistance gene belonged to hybridisation class C. Analysis of the C gene revealed that the deduced amino-acid sequence of the pSES21-encoded ErmC methylase exhibited 93% identity with the ErmC methylase encoded by plasmid pE194. The C gene of pSES21 was expressed constitutively and sequence analysis of the regulatory region showed multiple base-pair insertions and substitutions in the translational attenuator. As a consequence of these mutations, the reading frame of the small regulatory peptide was destroyed and a novel pair of inverted repeated sequences was generated. Previous studies identified sequence deletions and sequence duplications in the C regulatory region as the basis for constitutive C gene expression. The multiple point mutations shown in the pSES21-encoded C translational attenuator represent a novel kind of structural alteration in this regulatory region and may explain constitutive C gene expression by pairing of the newly generated inverted repeated segments in the presence of a functionally deleted reading frame for the small regulatory peptide.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-47-1-63
1998-01-01
2022-08-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/47/1/medmicro-47-1-63.html?itemId=/content/journal/jmm/10.1099/00222615-47-1-63&mimeType=html&fmt=ahah

References

  1. Lyon B. R., Skurray R. Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev 1987; 51:88–134
    [Google Scholar]
  2. Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 1995; 39:577–585
    [Google Scholar]
  3. Eady E. A., Ross J. I., Tipper J. L., Walters C. E., Cove J. H., Noble W. C. Distribution of genes encoding erythromycin ribosomal methylases and an erythromycin efflux pump in epidemiologically distinct groups of staphylococci. J Antimicrob Chemother 1993; 31:211–217
    [Google Scholar]
  4. Catchpole I., Dyke K. G. H. A Staphylococcus aureus plasmid that specifies constitutive macrolide-lincosamide-streptogramin B resistance contains a novel deletion in the ermC attenuator. FEMS Microbiol Lett 1990; 69:43–48
    [Google Scholar]
  5. Catchpole I., Thomas C., Davies A., Dyke K. G. H. The nucleotide sequence of Staphylococcus aureus plasmid pT48 conferring inducible macrolide-lincosamide-streptogramin B resistance and comparison with similar plasmids expressing constitutive resistance. J Gen Microbiol 1988; 134:697–709
    [Google Scholar]
  6. Greene R. T., Schwarz S. Small antibiotic resistance plasmids in Staphylococcus intermedius. Zentralbl Bakteriol 1992; 276:380–389
    [Google Scholar]
  7. Horinouchi S., Weisblum B. Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics. J Bacteriol 1982; 150:804–814
    [Google Scholar]
  8. Lampson B. C., Parisi J. T. Nucleotide sequence of the constitutive macrolide-lincosamide-streptogramin B resistance plasmid pNE131 from Staphylococcus epidermidis and homologies with Staphylococcus aureus plasmids pE194 and pSN2. J Bacteriol 1986; 167:888–892
    [Google Scholar]
  9. Lodder G., Schwarz S., Gregory P., Dyke K. Tandem duplication in ermC translational attenuator of the macrolide-lincosamide-streptogramin B resistance plasmid pSES6 from Staphylococcus equorum. Antimicrob Agents Chemother 1996; 40:215–217
    [Google Scholar]
  10. Lodder G., Schwarz S., Gregory P., Dyke K. G. H. Molecular analysis of plasmids from animal staphylococci mediating inducible or constitutive resistance to macrolide-lincosamide antibiotics. Abstracts of the 8th International Symposium on Staphylococci and Staphylococcal Infections. Aix-Les-Bains; France: 23-26 June 1996 P-191 236
    [Google Scholar]
  11. Lodder G., Werckenthin C., Schwarz S., Dyke K. G. H. Comparative analysis of the ermC adenine methylase genes encoded by the staphylococcal plasmids pSES4a, pSES5 and pSES6. EMBL Nucleotide Sequence Database Cambridge, UK: 1996 access, no. Y09001 09002
    [Google Scholar]
  12. Oliveira S. S., Murphy E., Gamon M. R., Bastos M. C. F. pRJ5, a naturally occurring Staphylococcus aureus plasmid expressing constitutive macrolide-lincosamide-streptogramin B resistance contains a tandem duplication in the leader region of the ermC gene. J Gen Microbiol 1993; 139:1461–1467
    [Google Scholar]
  13. Schwarz S., Blobel H. Isolation of a plasmid from “canine” Staphylococcus epidermidis mediating constitutive resistance to macrolides and lincosamides. Comp Immunol Microbiol Infect Dis 1990; 13:209–216
    [Google Scholar]
  14. Schwarz S., Wegener H., Blobel H. Plasmid-encoded resistance to macrolides and lincosamides in Staphylococcus hyicus. J Appl Bacteriol 1990; 69:845–849
    [Google Scholar]
  15. Schwarz S., Cardoso M., Grolz-Krug S., Blobel H. Common antibiotic resistance plasmids in Staphylococcus aureus and Staphylococcus epidermidis from human and canine infections. Zentralbl Bakteriol 1990; 273:369–377
    [Google Scholar]
  16. Weisblum B., Graham M. Y., Gryczan T., Dubnau D. Plasmid copy number control: isolation and characterization of high-copy-number mutants of plasmid pE194. J Bacteriol 1979; 137:635–643
    [Google Scholar]
  17. Allen N. E. Macrolide resistance in Staphylococcus aureus: inducers of macrolide resistance. Antimicrob Agents Chemother 1977; 11:669–674
    [Google Scholar]
  18. Leclercq R., Courvalin P. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother 1991; 35:1267–1272
    [Google Scholar]
  19. Dubnau D. Translational attenuation: the regulation of bacterial resistance to the macrolide-lincosamide-streptogramin B antibiotics. CRC Crit Rev Biochem 1984; 16:103–132
    [Google Scholar]
  20. Horinouchi S., Weisblum B. The control region for erythromycin resistance: free energy changes related to induction and mutation to constitutive expression. Mol Gen Genet 1981; 182:341–348
    [Google Scholar]
  21. Weisblum B. Inducible resistance to macrolides, lincosamides and streptogramin type B antibiotics: the resistance phenotype, its biological diversity, and structural elements that regulate expression-a review. J Antimicrob Chemother 1985; 16: Suppl A 63–90
    [Google Scholar]
  22. Monod M., Denoya C., Dubnau D. Sequence and properties of pIM13, a macrolide-lincosamide-streptogramin B resistance plasmid from Bacillus subtilis. J Bacteriol 1986; 167:138–147
    [Google Scholar]
  23. Gryczan T. J., Grandi G., Hahn J., Grandi R., Dubnau D. Conformational alteration of mRNA structure and the posttranscriptional regulation of erythromycin-induced drug resistance. Nucleic Acids Res 1980; 8:6081–6097
    [Google Scholar]
  24. Woods G. L., Washington J. A. Antibacterial susceptibility tests: dilution and disk diffusion methods. In Murray P. R., Baron E. J., Pfaller M. A., Tenover F. C., Yolken R. H. (eds) Manual of clinical microbiology 6th edn Washington, DC: American Society for Microbiology; 19951327–1341
    [Google Scholar]
  25. Schwarz S., Cardoso M., Blobel H. Plasmid-mediated chloramphenicol resistance in Staphylococcus hyicus. J Gen Microbiol 1989; 135:3329–3336
    [Google Scholar]
  26. Chang S., Cohen S. N. High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet 1979; 168:111–115
    [Google Scholar]
  27. Schwarz S., Noble W. C. Tetracycline resistance genes in staphylococci from the skin of pigs. J Appl Bacteriol 1994; 76:320–326
    [Google Scholar]
  28. Werckenthin C., Schwarz S., Dyke K. Macrolide-lincosamide-streptogramin B resistance in Staphylococcus lentus results from the intergration of part of a transposon into a small plasmid. Antimicrob Agents Chemother 1996; 40:2224–2225
    [Google Scholar]
  29. Murphy E., Huwyler L., do Carmo de Freire , Bastos M. Transposon Tn554: complete nucleotide sequence and isolation of transposition-defective and antibiotic-sensitive mutants. EMBO J 1985; 4:3357–3365
    [Google Scholar]
  30. Dagert M., Ehrlich S. D. Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene 1979; 6:23–28
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. Molecular cloning: a laboratory manual. 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989
    [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467
    [Google Scholar]
  33. Tinoco I., Borer P. N., Dengler B. Improved estimation of secondary structure in ribonucleic acids. Nature New Biol 1973; 246:40–41
    [Google Scholar]
  34. Dice L. R. Measures of the amount of ecologic association between species. Ecology 1945; 26:297–302
    [Google Scholar]
  35. Weisblum B. Insights into erythromycin action from studies of its activity as inducer of resistance. Antimicrob Agents Chemother 1995; 39:797–805
    [Google Scholar]
  36. Watanakunakom C. Clindamycin therapy of Staphylococcus aureus endocarditis. Clinical relapse and development of resistance to clindamycin, lincomycin and erythromycin. Am J Med 1976; 60:419–425
    [Google Scholar]
  37. Horinouchi S., Weisblum B. Posttranscriptional modification of mRNA conformation: mechanism that regulates erythromycin-induced resistance. Proc Natl Acad Sci USA 1980; 77:7079–7083
    [Google Scholar]
  38. Hahn J., Grandi G., Gryczan T. J., Dubnau D. Translational attenuation of ermC: a deletion analysis. Mol Gen Genet 1982; 186:204–216
    [Google Scholar]
  39. Dubnau D. Induction of ermC requires translation of the leader peptide. EMBO J 1985; 4:533–537
    [Google Scholar]
  40. Mayford M., Weisblum B. ermC leader peptide. Amino acid sequence critical for induction by translational attenuation. J Mol Biol 1989; 206:69–79
    [Google Scholar]
  41. Mayford M., Weisblum B. The ermC leader peptide: amino acid alterations leading to differential efficiency of induction by macrolide-lincosamide-streptogramin B antibiotics. J Bacteriol 1990; 172:3772–3779
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-47-1-63
Loading
/content/journal/jmm/10.1099/00222615-47-1-63
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error