1887

Abstract

can utilise amino acids as the sole carbon energy source. The present study demonstrated that grown in continuous culture in a defined medium containing glucose and amino acids utilised alanine, arginine, asparagine, aspartate, glutamine, glutamate, proline and serine. Specific asparaginase and glutaminase enzymes deaminated asparagine and glutamine respectively to aspartate and glutamate, with the production of ammonia. The glutaminase activity was inhibited by 6-diazo-5-oxo-L-norleucine. All the 13 strains of tested produced both glutaminase and asparaginase activities. Glutamine is important in the health of the gastric and intestinal mucosa and is a primary energy source for lymphocytes. Depletion of glutamine at the site of infection may be of significance in the pathogenesis of -associated diseases such as peptic ulcer and gastric cancer.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-46-9-793
1997-09-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/46/9/medmicro-46-9-793.html?itemId=/content/journal/jmm/10.1099/00222615-46-9-793&mimeType=html&fmt=ahah

References

  1. Warren J. R., Marshall B. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1983; 1:1273–1275
    [Google Scholar]
  2. Marshall B. J., Warren J. R. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1984; 1:1311–1315
    [Google Scholar]
  3. Parsonnet J., Friedmen G. D., Vandersteen D. P. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 1991; 325:1127–1131
    [Google Scholar]
  4. Wotherspoon A. C., Doglioni C., Diss T. C. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue after eradication of Helicobacter pylori. Lancet 1993; 342:575–577
    [Google Scholar]
  5. Leunk R. D., Johnson P. T., David B. C., Kraft W. G., Morgan D. R. Cytotoxic activity in broth-culture filtrates of Campylobacter pylori. J Med Microbiol 1988; 26:93–99
    [Google Scholar]
  6. Covacci A., Censini S., Bugnoli M. Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc Natl Acad Sci USA 1993; 90:5791–5795
    [Google Scholar]
  7. Mégraud F., Bonnet F., Gamier M., Lamouliatte M. Characterization of “Campylobacter pylori” by culture, enzymic profile, and protein content. J Clin Microbiol 1985; 22:1007–1010
    [Google Scholar]
  8. Hu L-T, Mobley H. L. T. Purification and N-terminal analysis of urease from Helicobacter pylori. Infect Immun 1990; 58:992–998
    [Google Scholar]
  9. Dunn B. E. Pathogenic mechanisms of Helicobacter pylori. Gasteroenterol Clin North Am 1993; 22:43–57
    [Google Scholar]
  10. Megraud F., Neman-Simha Y., Briigmann D. Further evidence of the toxic effects of ammonia produced by Helicobacter pylori urease on human epithelial cells. Infect Immun 1992; 60:1858–1863
    [Google Scholar]
  11. Mcnulty C. A. M., Dent J. C. Rapid identification of Campylobacter pylori (Cpyloridis) by preformed enzymes. J Clin Microbiol 1987; 25:1683–1686
    [Google Scholar]
  12. Mendz G. L., Hazell S. L., Bums B. P. Glucose utilization and lactate production by Helicobacter pylori. J Gen Microbiol 1993; 139:3023–3028
    [Google Scholar]
  13. Schaffer G., Stark R., Greenman J. Glucose metabolism by Helicobacter pylori (Comment). Microbiology 1994; 140:2179
    [Google Scholar]
  14. Nedenskov P. Nutritional rerquirements for growth of Helicobacter pylori. Appl Environ Microbiol 1994; 60:3450–3453
    [Google Scholar]
  15. Mendz G. L., Hazell S. L. Aminoacid utilization by Helicobacter pylori. Int J Biochem Cell Biol 1995; 27:1085–1093
    [Google Scholar]
  16. Millar M. R., Pike J. Bactericidal activity of antimicrobial agents against slowly growing Helicobacter pylori. Antimicrob Agents Chemother 1992; 36:185–187
    [Google Scholar]
  17. Kangatharlingam N., Amy S. Helicobacter pylori comb. nov. exhibits facultative acidophilism and obligate microaero-philism. Appl Environ Microbiol 1994; 60:2176–2179
    [Google Scholar]
  18. Reynolds D. J., Penn C. W. Characteristics of Helicobacter pylori growth in a defined medium and determination of its amino acid requirements. Microbiology 1994; 140:2649–2656
    [Google Scholar]
  19. Weatherbum M. W. Phenol-hypochlorite reaction for the determination of ammonia. Anal Chem 1967; 39:971–974
    [Google Scholar]
  20. Suleiman M.-S., Wallace D., Birkett S., Angelini G. D. Changes in the intracellular free amino acid pool in human saphenous vein tissue culture. Exp Physiol 1996; 81:435–446
    [Google Scholar]
  21. Roberts J., Holcenberg J. S., Dolowy W. C. Isolation, crystalization, and properties of Achromobacteraceae glutataminase-asparaginase with antitumor activity. J Biol Chem 1972; 247:84–90
    [Google Scholar]
  22. Olivieri R., Bugnoli D., Armellini D. Growth of Helicobacter pylori in media containing cyclodextrins. J Clin Microbiol 1993; 31:160–162
    [Google Scholar]
  23. Zollner H. Handbook of enzyme inhibitors. Cambridge: VCH Publishers (UK) Ltd; 1989
    [Google Scholar]
  24. Catrenich C. E., Makin K. M. Characterization of the morphologic conversion of Helicobacter pylori from bacillary to coccoid forms. Scand J Gasteroenterol 1991; 26: Suppl 18158–64
    [Google Scholar]
  25. Hodgins D. S. Yeast phenylalanine ammonia-lyase. Purification, properties and the identification of catalytically essential dehydroalanine. J Biol Chem 1971; 246:2977–2985
    [Google Scholar]
  26. Birkholz S., Knipp U., Lemma E., Kroger A., Opferkuch W. Fumarate reductase of Helicobacter pylori - an immunogenic protein. J Med Microbiol 1994; 41:56–62
    [Google Scholar]
  27. Chalk P. A., Roberts A. D., Blows W. M. Metabolism of pyruvate and glucose by intact cells of Helicobacter pylori studied by 13C NMR spectroscopy. Microbiology 1994; 40:2085–2092
    [Google Scholar]
  28. Hoffmann P. S., Goodwin A., Johnsen J., Magee K., Veldhuyzen van Zanten S. J. O. Metabolic activities of metronidazole-sensitive and -resistant strains of Helicobacter pylori: repression of pyruvate oxidoreductase and expression of isocitrate lyase activity correlate with resistance. J Bacteriol 1996; 178:4822–4829
    [Google Scholar]
  29. Salway J. G. Metabolism at a glance. Oxford: Blackwell Science; 1994
    [Google Scholar]
  30. Newsholme P., Costa Rosa L. F. B. P., Newsholme E. A., Curi R. The importance of fuel metabolism in macrophage function. Cell Biochem Funct 1996; 14:1–10
    [Google Scholar]
  31. Castell L. M., Bevan S. J., Calder P., Newsholme E. A. The role of glutamine in the immune system and in intestinal function in catabolic states. Amino Acids 1994; 7:231–243
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-46-9-793
Loading
/content/journal/jmm/10.1099/00222615-46-9-793
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error