1887

Abstract

The use of DNA amplification techniques such as the polymerase chain reaction (PCR) in modern diagnostic microbiology not only allows the sensitive and specific identification of micro-organisms but also the detection of specific antibiotic resistance genes. This study describes a multiplex PCR on bacterial colonies picked directly from agar plates without preceding DNA preparation. Eubacteria and staphylococci were identified by 16S rRNA specific PCR products. In parallel, specific primers were used for the detection of staphylococcal and genes. This 4-h multiplex PCR, consisting of four sets of primers, was evaluated for rapid and specific differential diagnosis of methicillin-resistant and methicillin-susceptible strains of and coagulase-negative staphylococci. To analyse specificity of the amplification products, 100 non-staphylococcal, eubacterial isolates and 20 strains were tested. In a first step, specificity of all four single sets of primers was evaluated before the co-amplification within the multiplex PCR procedure was performed. The results were compared with those of conventional susceptibility and typing methods. The specific 16S rRNA PCR product for eubacterial isolates (n = 786) and staphylococci (686) was found in all strains tested. The gene was detected only in (488) strains with a specificity of 100%, and was not detected in any of the coagulase-negative staphylococci (198). The gene was detected in 98% of methicillin-resistant staphylococci (393) and in 2% of all methicillin-susceptible staphylococci (293). The multiplex PCR with co-amplification of different determinants provides rapid reliable information on staphylococcal identification and methicillin susceptibility supporting the diagnosis, treatment and control of staphylococcal infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-46-9-773
1997-09-01
2022-10-03
Loading full text...

Full text loading...

/deliver/fulltext/jmm/46/9/medmicro-46-9-773.html?itemId=/content/journal/jmm/10.1099/00222615-46-9-773&mimeType=html&fmt=ahah

References

  1. Visser M. R., Fluit A. C. Amplification methods for the detection of bacterial resistance genes. JMIMDQ 1995; 23:105–116
    [Google Scholar]
  2. Mulligan M. E., Murray K. A., Ripner B. S. Methicillin resistant Staphylococcus aureus: a consensus review of the microbiology, pathogenesis, and epidemiology with implications for prevention and management. Am J Med 1993; 94:313–328
    [Google Scholar]
  3. Emori T. G., Gaynes R. P. An overview of nosocomial infections, including the role of the microbiology laboratory. Clin Microbiol Rev 1993; 6:428–442
    [Google Scholar]
  4. Hartman B. J., Tomasz A. Expression of methicillin resistance in heterogeneous strains of Staphylococcus aureus. Antimicrob Agents Chemother 1986; 29:85–92
    [Google Scholar]
  5. Madiraju M. V. V. S., Brunner D. P., Wilkinson B. J. Effects of temperature, NaCl, and methicillin on penicillin-binding proteins, growth, peptidoglycan synthesis, and autolysis in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 1987; 31:1727–1733
    [Google Scholar]
  6. Watanakunakom C. Effect of inoculum size on in vitro susceptibility of methicillin-resistant Staphylococcus aureus to eighteen antimicrobial agents. Eur J Clin Microbiol 1985; 4:68–70
    [Google Scholar]
  7. Suzuki E., Hiramatsu K., Yokota T. Survey of methicillin-resistant clinical strains of coagulase-negative staphylococci for mecA gene distribution. Antimicrob Agents Chemother 1992; 36:429–434
    [Google Scholar]
  8. Archer G. L., Pennell E. Detection of methicillin resistance in staphylococci by using a DNA probe. Antimicrob Agents Chemother 1990; 34:1720–1724
    [Google Scholar]
  9. Ligozzi M., Rossolini G. M., Tonin E. A., Fontana R. Nonradioactive DNA probe for detection of gene for methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 1991; 35:575–578
    [Google Scholar]
  10. Suzuki E., Kuwahara-Arai K., Richardson J. F., Hiramatsu K. Distribution of mec regulator genes in methicillin-resistant Staphylococcus clinical strains. Antimicrob Agents Chemother 1993; 37:1219–1226
    [Google Scholar]
  11. Maidhof H., Reinicke B., Bliimel P., Berger-Bachi B., La-bischinski H. femA, which encodes a factor essential for expression of methicillin resistance, affects glycine content of peptidoglycan on methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains. J Bacteriol 1991; 173:3507–3513
    [Google Scholar]
  12. Ryffel C., Kayser F. H., Berger-Bachi B. Correlation between regulation of mecA transcription and expression of methicillin resistance in staphylococci. Antimicrob Agents Chemother 1992; 36:25–31
    [Google Scholar]
  13. Ryffel C., Tesch W., Birch-Machin I. Sequence comparison of mecA genes isolated from methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. Gene 1990; 94:137–138
    [Google Scholar]
  14. Murakami K., Minamide W., Wada K., Nakamura E., Teraoka H., Watanabe S. Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. J Clin Microbiol 1991; 29:2240–2244
    [Google Scholar]
  15. Predari S. C., Ligozzi M., Fontana R. Genotypic identification of methicillin-resistant coagulase-negative staphylococci by polymerase chain reaction. Antimicrob Agents Chemother 1991; 35:2568–2573
    [Google Scholar]
  16. Ünal S., Hoskins J., Flokowitsch E., Wu C. Y. E., Preston D. A., Skatrud P. L. Detection of methicillin-resistant staphylococci by using the polymerase chain reaction. J Clin Microbiol 1992; 30:1685–1691
    [Google Scholar]
  17. Tokue Y., Shoji S., Satoh K., Watanabe A., Motomiya M. Comparison of a polymerase chain reaction assay and a conventional microbiologic method for detection of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 1992; 36:6–9
    [Google Scholar]
  18. Ubukata K., Nakagami S., Nitta A. Rapid identification of the mecA gene in methicillin-resistant staphylococci by enzymatic detection of polymerase chain reaction products. J Clin Microbiol 1992; 30:1728–1733
    [Google Scholar]
  19. Hiramatsu K., Suzuki E., Takayama Y., Katayama Y., Yokota T. Role of penicillinase plasmids in the stability of the mecA gene in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 1990; 34:600–604
    [Google Scholar]
  20. Hedin G., Lofdahl S. Detecting methicillin-resistant Staphylococcus epidermidis - disc diffusion, broth breakpoint or polymerase chain reaction?. APMIS 1993; 101:311–318
    [Google Scholar]
  21. Phonimdaeng P., O’Reilly M., Nowlan P., Bramley A. J., Foster T. J. The coagulase of Staphylococcus aureus 8325-4. Sequence analysis and virulence of site-specific coagulase-deficient mutants. Mol Microbiol 1990; 4:393–404
    [Google Scholar]
  22. Zambardi G., Reverdy M. E., Bland S., Bes M., Freney J., Fleurette J. Laboratory diagnosis of oxacillin resistance in Staphylococcus aureus by a multiplex-polymerase chain reaction assay. Diagn Microbiol Infect Dis 1994; 19:25–31
    [Google Scholar]
  23. Brakstad O. G., Tveten Y., Nato F., Fournier J. M. Comparison of various methods and reagents for specific identification of Staphylococcus aureus positive or negative for the mecA gene. APMIS 1993; 101:651–654
    [Google Scholar]
  24. Vannuffel P., Gigi J., Ezzedine H. Specific detection of methicillin-resistant Staphylococcus species by multiplex PCR. J Clin Microbiol 1995; 33:2864–2867
    [Google Scholar]
  25. Geha D. J., Uhl J. R., Gustaferro C. A., Persing D. H. Multiplex PCR for identification of methicillin-resistant staphylococci in the clinical laboratory. J Clin Microbiol 1994; 32:1768–1772
    [Google Scholar]
  26. Schmitz F.-J., Kitzrow M., Haupt C. Antimicrobial susceptibility and typing of coagulase-negative staphylococci from different intensive care units. Clin Lab 1996; 42:403–410
    [Google Scholar]
  27. Schmitz F.-J., Geisel R., Wagner S. Typing antimicrobial susceptibility and frequency of methicillin-resistant Staphylococcus aureus strains on a surgical intensive care unit (ICU). Zentral Hyg Umweltmed 1996; 198:355–380
    [Google Scholar]
  28. Deutsches Institut fur Normung: Empfindlichkeitsprufung von Krankheitserregem gegen Chemotherapeutika In DIN-Taschenbuch Medizinische Mikrobiologie und Immunologie. Berlin: Beuth; 1992331–406
    [Google Scholar]
  29. Ryffel C., Tesch W., Birch-Machin I. Sequence comparison of mecA genes isolated from methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis, bases 1-2322. Eintrag in die Genbank 1990
    [Google Scholar]
  30. Greisen K., Loeffelholz M., Purohit A., Leong D. PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J Clin Microbiol 1994; 32:335–351
    [Google Scholar]
  31. Leong D. U. Staphylococcus aureus ATCC 25923 16S rRNA gene, partial sequence, bases 1-366. Eintrag in die Genbank 1993
    [Google Scholar]
  32. De Lencastre H. M., Sa Figueiredo A. M., Urban C., Rahal J., Tomasz A. Multiple mechanisms of methicillin-resistance and improved methods for detection in clinical isolates of Staphylococcus aureus. Antimicrob Agents Chemother 1991; 35:632–639
    [Google Scholar]
  33. Hackbart C., Chambers H. Methicillin-resistant staphylococci: detection methods and treatment of infections. Antimicrob Agents Chemother 1989; 33:995–999
    [Google Scholar]
  34. Delencastre H. M., Tomasz A. Reassessment of the number of auxiliary genes essential for expression of high level methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 1994; 38:2590–2598
    [Google Scholar]
  35. National Committee for Clinical Laboratory Standards Approved standard M7-A2. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically 2nd edn Villanova, PA: National Committee for Clinical Laboratory Standards; 1990
    [Google Scholar]
  36. National Committee for Clinical Laboratory Standards Approved standard M2-A4. Antimicrobial disk susceptibility tests 4th edn Villanova, PA: National Committee for Clinical Laboratory Standards; 1990
    [Google Scholar]
  37. Gerberding J. L., Miick C., Liu H. H., Chambers H. F. Comparison of conventional susceptibility tests with direct detection of penicillin-binding protein 2a in borderline oxacillin-resistant strains of Staphylococcus aureus. Antimicrob Agents Chemother 1991; 35:2574–2579
    [Google Scholar]
  38. Massiddia O., Montanari M. P., Varaldo P. E. Evidence for methicillin-hydrolyzing β-lactamase in Staphylococcus aureus strains with borderline susceptibility to this drug. FEMS Lett 1992; 92:223–228
    [Google Scholar]
  39. Montanari M. P., Tonin E., Biavasco F., Varaldo P. E. Further characterization of borderline methicillin-resistant Staphylococcus aureus and analysis of penicillin-binding proteins. Anti-microb Agents Chemother 1990; 34:911–913
    [Google Scholar]
  40. Murakami K., Nomura K., Doi M., Yoshida T. Production of low-affinity penicillin-binding protein by low- and high-resistance groups of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 1987; 31:1307–1311
    [Google Scholar]
  41. Mcdougal L. K., Thomsberry C. The role of β-lactamase in staphylococcal resistance to penicillinase-resistant penicillins and cephalosporins. J Clin Microbiol 1986; 23:832–839
    [Google Scholar]
  42. Tomasz A., Drugeon H. B., DeLencastre H. M., Jabes D., Mcdougall L., Bille J. New mechanism for methicillin-resistance in Staphylococcus aureus: clinical isolates that lack the PBP 2a gene and contain normal penicillin-binding protein in methicillin-resistant staphylococci. Antimicrob Agents Chemother 1989; 33:1869–1874
    [Google Scholar]
  43. Pfaller M. A., Herwaldt L. A. Laboratory, clinical, and epidemiological aspects of coagulase-negative staphylococci. Clin Microbiol Rev 1988; 1:281–299
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-46-9-773
Loading
/content/journal/jmm/10.1099/00222615-46-9-773
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error