1887

Abstract

Members of the genus , particularly multiresistant strains of , are implicated in a wide spectrum of nosocomial infections, including bacteraemia, secondary meningitis and urinary tract infection, but have now assumed a particularly important role as agents of nosocomial pneumonia in intensive care units (ICUs). Rapid genotyping methods for the identification and typing of these organisms have allowed a better appreciation of the epidemiology and survival of these organisms in the hospital environment. Their emergence as significant pathogens seems to be related partly to their survival ability and partly to their ability to develop resistance rapidly to the major groups of antibiotics, resulting in a considerable selective advantage in environments (such as ICUs) with widespread and heavy use of antibiotics. Molecular and biochemical mechanisms of resistance to the major β-lactam, aminoglycoside and quinolone groups of antibiotics have now been elucidated in some detail for these organisms, and experimental models, including a mouse model of pneumonia, have been developed to examine the efficacy of different therapeutic regimens for difficult-to-treat-infections caused by these bacteria. ‘Non-classic’ antibiotic combinations—such as ticarcillin with clavulanic acid and sulbactam—seem to show promise for treating systemic infections caused by otherwise multiresistant strains, but revised screening procedures in the pharmaceutical industry may be required in the near future to select novel compounds with activity against multiresistant spp. and other emerging gram-negative, non-fermentative bacilli in general.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-46-9-721
1997-09-01
2021-12-01
Loading full text...

Full text loading...

/deliver/fulltext/jmm/46/9/medmicro-46-9-721.html?itemId=/content/journal/jmm/10.1099/00222615-46-9-721&mimeType=html&fmt=ahah

References

  1. Towner K. J. Biology of Acinetobacter spp. In Bergogne-Berezin E., Joly-Guillou M. L., Towner K. J. (eds) Acinetobacter. microbiology, epidemiology, infections, management Boca Raton: CRC Press; 199613–36
    [Google Scholar]
  2. Bergogne-Berezin E., Towner K. J. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 1996; 9:148–165
    [Google Scholar]
  3. Piechaud D., Piechaud M., Second L. Varietes proteolytiques de Moraxella Iwoffi et de Moraxella glucidolytica (Bad. anitratum). Ann Inst Pasteur 1956; 90:517–522
    [Google Scholar]
  4. Brisou J., Prevot A. R. Etudes de systematique bacterienne: revision des especes reunies dans le genre Achromobacter. Ann Inst Pasteur 1954; 86:722–728
    [Google Scholar]
  5. Bovre K., Henriksen S. D. Minimal standards for description of new taxa within the genera Moraxella and Acinetobacter. Proposal by the Subcommittee on Moraxella and Allied Bacteria. Int J Syst Bacteriol 1976; 26:92–96
    [Google Scholar]
  6. Juni E. Genus III. Acinetobacter Brisou and Prevot 1954, 727 AL. In Krieg N. R., Hold J. G. (eds) Bergey’s Manual of systematic bacteriology vol 1 Baltimore: Williams and Wilkins; 1984303–307
    [Google Scholar]
  7. Glew R. H., Moellering R. C., Kunz L. J. Infections with Acinetobacter calcoaceticus (Herellea vaginicola). Clinical and laboratory studies. Medicine 1977; 56:79–97
    [Google Scholar]
  8. Ramphal R., Kluge R. M. Acinetobacter calcoaceticus variety anitratus: an increasing nosocomial problem. Am J Med Sci 1979; 277:57–66
    [Google Scholar]
  9. French G. L., Casewell M. W., Roncoroni A. J., Knight S., Phillips I. A. hospital outbreak of antibiotic-resistant Acinetobacter anitratus: epidemiology and control. J Hosp Infect 1980; 1:125–131
    [Google Scholar]
  10. Vila J., Almela M., Jimenez de Anta M. T. Laboratory investigation of hospital outbreak caused by two different multiresistant Acinetobacter calcoaceticus subsp. anitratus strains. J Clin Microbiol 1989; 27:1086–1089
    [Google Scholar]
  11. Struelens M. J., Carlier E., Maes N., Serruys E., Quint W. G. V., Van Belkum A. Nosocomial colonization and infection with multiresistant Acinetobacter baumannii: outbreak delineation using DNA macrorestriction analysis and PCR-fingerprinting. J Hosp Infect 1993; 25:15–32
    [Google Scholar]
  12. Green A. R., Milling M. A. P. Infection with Acinetobacter in bums unit. Burns 1983; 9:292–294
    [Google Scholar]
  13. Bergogne-Berezin E., Joly-Guillou M. L. An underestimated nosocomial pathogen. Acinetobacter calcoaceticus. J Anti-microb Chemother 1985; 16:535–538
    [Google Scholar]
  14. Hartstein A. I., Rashad A. L., Liebler J. M. Multiple intensive care unit outbreak of Acinetobacter calcoaceticus subspecies anitratus respiratory infection and colonization associated with contaminated, reusable ventilator circuits and resuscitation bags. Am J Med 1988; 85:624–631
    [Google Scholar]
  15. Bergogne-Berezin E., Joly-Guillou M. L., Vieu J. F. Epidemiology of nosocomial infections due to Acinetobacter calcoaceticus. J Hosp Infect 1987; 10:105–113
    [Google Scholar]
  16. Joly-Guillou M. L., Bergogne-Berezin E., Vieu J. F. Epidémiologie et résistance aux antibiotiques d’Acinetobacter en milieu hospitalier: bilan de 5 annees. Presse Med 1990; 19:357–361
    [Google Scholar]
  17. Bergogne-Berezin E. Resistance of Acinetobacter spp. to antimicrobials–overview of clinical resistance patterns and therapeutic problems. In Bergogne-Berezin E., Joly-Guillou M. L., Towner K. J. (eds) Acinetobacter. microbiology, epidemiology, infections, management Boca Raton: CRC Press; 1996133–183
    [Google Scholar]
  18. Levi I., Rubinstein E. Acinetobacter infections - overview of clinical features. In Bergogne-Berezin E., Joly-Guillou M. L., Towner K. J. (eds) Acinetobacter. microbiology, epidemiology, infections, management Boca Raton: CRC Press; 1996101–115
    [Google Scholar]
  19. Joly-Guillou M. L., Deere D., Wolff M., Bergogne-Berezin E. Acinetobacter spp.: clinical epidemiology in 89 intensive care units. A retrospective study in France during 1991. 2nd International Conference on the Prevention of Infection (CIPI); Nice: 1992 abstract CJI
    [Google Scholar]
  20. Seifert H., Baginski R., Schulze A., Pulverer G. Antimicrobial susceptibility of Acinetobacter species. Antimicrob Agents Chemother 1993; 37:750–753
    [Google Scholar]
  21. Buxton A. E., Anderson R. L., Werdegar D., Atlas E. Nosocomial respiratory tract infection and colonization with Acinetobacter calcoaceticus. Epidemiologic characteristics. Am J Med 1978; 65:507–513
    [Google Scholar]
  22. Cefai C., Richards J., Gould F. K., Mcpeake P. An outbreak of Acinetobacter respiratory tract infection, resulting from incomplete disinfection of ventilatory equipment. J Hosp Infect 1990; 15:117–182
    [Google Scholar]
  23. Chastre J., Trouillet J. L., Vuagnat A., Joly-Guillou M. L. Nosocomial pneumonia caused by Acinetobacter spp. In Bergogne-Berezin E., Joly-Guillou M. L., Towner K. J. (eds) Acinetobacter. microbiology, epidemiology, infections, management Boca Raton: CRC Press; 1996117–132
    [Google Scholar]
  24. Siegman-Ingra Y., Bar Yosef S., Gorea A., Avram J. Nosocomial Acinetobacter meningitis secondary to invasive procedures: report of 25 cases and review. Clin Infect Dis 1993; 17:843–849
    [Google Scholar]
  25. Joly-Guillou M. L., Brun-Buisson C. Epidemiology of Acineto-bacter spp.: surveillance and management of outbreaks. In Bergogne-Berezin E., Joly-Guillou M. L., Towner K. J. (eds) Acinetobacter. microbiology, epidemiology, infections, management Boca Raton: CRC Press; 199671–100
    [Google Scholar]
  26. Beijerinck M. W. Uber Pigmentbildung bei Essigbakterien. Centralbl Bakteriol Parasit 1911; 29:169–176
    [Google Scholar]
  27. Baumann P., Doudoroff M., Stanier R. Y. A study of the Moraxella group. II. Oxidative-negative species (genus Acinetobacter). J Bacteriol 1968; 95:1520–1541
    [Google Scholar]
  28. Lautrop H. Acinetobacter. In Buchanan R. E., Gibbons N. E. (eds) Bergey’s Manual of determinative bacteriology 8th edn Baltimore: Williams and Wilkins; 1974436–438
    [Google Scholar]
  29. Bouvet P. J. M., Grimont P. A. D. Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter Iwoffii. Int J Syst Bacteriol 1986; 36:228–240
    [Google Scholar]
  30. Bouvet P. J. M., Jeanjean S. Delineation of new proteolytic genomic species in the genus Acinetobacter. Res Microbiol 1989; 140:291–299
    [Google Scholar]
  31. Tjemberg I., Ursing J. Clinical strains of Acinetobacter classified by DNA-DNA hybridization. APMIS 1989; 97:595–605
    [Google Scholar]
  32. Nishimura Y., Ino T., Iizuka H. Acinetobacter radioresistens sp. nov. isolated from cotton and soil. Int J Syst Bacteriol 1988; 38:209–211
    [Google Scholar]
  33. Nishimura Y., Kano M., Ino T., Iizuka H., Kosako Y., Kaneko T. Deoxyribonucleic acid relationship among the radiation-resistant Acinetobacter and other Acinetobacter. J Gen Appl Microbiol 1987; 33:371–376
    [Google Scholar]
  34. Gemer-Smidt P., Tjemberg I., Ursing J. Reliability of phenotypic tests for identification of Acinetobacter species. J Clin Microbiol 1991; 29:277–282
    [Google Scholar]
  35. Kampfer P., Tjemberg I., Ursing J. Numerical classification and identification of Acinetobacter genomic species. J Appl Bacteriol 1993; 75:259–268
    [Google Scholar]
  36. Bernards A. T., Dijkshoom L., Van der Toom J., Bochner B. R., Van Boven C. P. A. Phenotypic characterisation of Acinetobacter strains of 13 DNA-DNA hybridisation groups by means of the Biolog system. J Med Microbiol 1995; 42:113–119
    [Google Scholar]
  37. Bernards A. T., van der Toom J., Van Boven C. P. A., Dijkshoom L. Evaluation of the ability of a commercial system to identify Acinetobacter genomic species. Eur J Clin Microbiol Infect Dis 1996; 15:303–308
    [Google Scholar]
  38. Bouvet P. J. M., Jeanjean S. Differentiation of Acinetobacter calcoaceticus sensu stricto from related Acinetobacter species by electrophoretic polymorphism of malate dehydrogenase, glutamate dehydrogenase and catalase. Res Microbiol 1995; 146:773–785
    [Google Scholar]
  39. Dijkshoom L. Acinetobacter–microbiology. In Bergogne-Berezin E., Joly-Guillou M. L., Towner K. J. (eds) Acinetobacter. microbiology, epidemiology, infections, management Boca Raton: CRC Press; 199637–69
    [Google Scholar]
  40. Gerner-Smidt P. Ribotyping of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J Clin Microbiol 1992; 30:2680–2685
    [Google Scholar]
  41. Janssen P., Coopman R., Huys G. Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiology 1996; 142:1881–1893
    [Google Scholar]
  42. Vaneechoutte M., Dijkshoom L., Tjemberg I. Identification of Acinetobacter genomic species by amplified ribosomal DNA restriction analysis. J Clin Microbiol 1995; 33:11–15
    [Google Scholar]
  43. Ehrenstein B., Bernards A. T., Dijkshoom L. Acinetobacter species identification by using tRNA spacer fingerprinting. J Clin Microbiol 1996; 34:2414–2420
    [Google Scholar]
  44. Nowak A., Burkiewicz A., Kur J. PCR differentiation of seventeen genospecies of Acinetobacter. FEMS Microbiol Lett 1995; 126:181–187
    [Google Scholar]
  45. Nowak A., Kur J. Genomic species typing of acinetobacters by polymerase chain reaction amplification of the recA gene. FEMS Microbiol Lett 1995; 130:327–332
    [Google Scholar]
  46. Yamamoto S., Harayama S. Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products. Int J Syst Bacteriol 1996; 46:506–511
    [Google Scholar]
  47. Bouvet P. J. M., Grimont P. A. D. Identification and biotyping of clinical isolates of Acinetobacter. Ann Inst Pasteur/Microbiol 1987; 138:569–578
    [Google Scholar]
  48. Crowe M., Towner K. J., Humphreys H. Clinical and epidemiological features of an outbreak of acinetobacter infection in an intensive therapy unit. J Med Microbiol 1995; 43:55–62
    [Google Scholar]
  49. Webster C. A., Towner K. J., Humphreys H., Ehrenstein B., Hartung D., Grundmann H. Comparison of rapid automated laser fluorescence analysis of DNA fingerprints with four other computer-assisted approaches for studying relationships between Acinetobacter baumannii isolates. J Med Microbiol 1996; 44:185–194
    [Google Scholar]
  50. Seifert H., Schulze A., Baginski R., Pulverer G. Comparison of four different methods for epidemiologic typing of Acinetobacter baumannii. J Clin Microbiol 1994; 32:1816–1819
    [Google Scholar]
  51. Janssen P., Dijkshoom L. High resolution DNA fingerprinting of Acinetobacter outbreak strains. FEMS Microbiol Lett 1996; 142:191–194
    [Google Scholar]
  52. Dijkshoom L., Aucken H., Gemer-Smidt P. Comparison of outbreak and nonoutbreak Acinetobacter baumannii strains by genotypic and phenotypic methods. J Clin Microbiol 1996; 34:1519–1525
    [Google Scholar]
  53. Bergogne-Berezin E., Joly-Guillou M. L. Antibiotic resistance mechanisms in Acinetobacter. In Towner K. J., Bergogne-Berezin E., Fewson C. A. (eds) The biology of Acinetobacter. taxonomy, clinical importance, molecular biology, physiology, industrial relevance New York: Plenum; 199183–115
    [Google Scholar]
  54. Fass R. J., Bamishan J., Ayers L. W. Emergence of bacterial resistance to imipenem and ciprofloxacin in a university hospital. J Antimicrob Chemother 1995; 36:343–353
    [Google Scholar]
  55. Kljucar S., Heimesaat M. V., Pritzbuer E. Rationale for different dosing regimens of ciprofloxacin i.v. in the treatment of nosocomial infections. 6th International Congress for Infectious Diseases; Prague: 1994 abstract 907
    [Google Scholar]
  56. Bauemfeind A., Schweighart S., Eberlein E., Rotter G. Bactericidal kinetics of ampicillin plus sulbactam for Acinetobacter baumannii and Acinetobacter Iwoffii. 5th European Congress of Clinical Microbiology and Infectious Diseases; Oslo: 1991 abstract 1760
    [Google Scholar]
  57. Bauemfeind A. Questioning dosing regimens of ciprofloxacin. J Antimicrob Chemother 1993; 31:789–798
    [Google Scholar]
  58. Joly-Guillou M. L., Deere D., Bergogne-Berezin E. Infections nosocomiales a Acinetobacter: surveillance epidemiologique hospitaliere. Bull Epidemiol Hebdominaire 1992; vL:211–212
    [Google Scholar]
  59. Amyes S. G. B., Young H.-K. Mechanisms of antibiotic resistance in Acinetobacter spp.–genetics of resistance. In Bergogne-Berezin E., Joly-Guillou M. L., Towner K. J. (eds) Acinetobacter. microbiology, epidemiology, infections, management Boca Raton: CRC Press; 1996185–223
    [Google Scholar]
  60. Goldstein F. W., Labigne-Roussel A., Gerbaud G., Carlier C., Collatz E., Courvalin P. Transferable plasmid-mediated antibiotic resistance in Acinetobacter. Plasmid 1983; 10:138–147
    [Google Scholar]
  61. Joly-Guillou M. L., Vallee E., Bergogne-Berezin E., Philippon A. Distribution of beta-lactamases and phenotype analysis in clinical strains of Acinetobacter calcoaceticus. J Antimicrob Chemother 1988; 22:597–604
    [Google Scholar]
  62. Matthew M., Harris A. M. Identification of /3-lactamases by analytical isoelectric focusing: correlation with bacterial taxonomy. J Gen Microbiol 1976; 94:55–67
    [Google Scholar]
  63. Medeiros A. A., Hare R., Papa E., Adam C., Miller G. H. Gram-negative bacilli resistant to third-generation cephalosporins> β-lactamase characterization and susceptibility to Sch 34343. J Antimicrob Chemother 1985; 15: Suppl C 119–132
    [Google Scholar]
  64. Joly-Guillou M. L., Bergogne-Berezin E., Moreau N. Enzymatic resistance to β-lactams and aminoglycosides in Acinetobacter calcoaceticus. J Antimicrob Chemother 1987; 20:773–776
    [Google Scholar]
  65. Hikida M., Yoshisa M., Mitsuhashi S., Inoue M. Purification and properties of a cephalosporinase from Acinetobacter calcoaceticus. J Antibiot 1989; 42:123–126
    [Google Scholar]
  66. Morohoshi T., Saito T. β-lactamase and β-lactam resistance in Acinetobacter anitratum. J Antibiot 1977; 30:969–973
    [Google Scholar]
  67. Hood J., Amyes S. G. B. A novel method for the identification and distinction of the beta-lactamases of the genus Acinetobacter. J Appl Bacteriol 1989; 67:157–163
    [Google Scholar]
  68. Perilli M., Felici A., Oratore A. Characterization of the chromosomal cephalosporinases produced by Acinetobacter Iwoffii and Acinetobacter baumannii clinical isolates. Antimicrob Agents Chemother 1996; 40:715–719
    [Google Scholar]
  69. Hood J., Amyes S. G. B. The chromosomal beta-lactamases of the genus Acinetobacter: enzymes which challenge our imagination. In Towner K. J., Bergogne-Berezin E., Fewson C. A. (eds) The biology of Acinetobacter. taxonomy, clinical importance, molecular biology, physiology, industrial relevance New York: Plenum; 1991117–132
    [Google Scholar]
  70. Tankovic J., Legrand P., De Gatines G., Chemineau V., Brun-Buisson C., Duval J. Characterization of a hospital outbreak of imipenem-resistant Acinetobacter baumannii by phenotypic and genotypic typing methods. J Clin Microbiol 1994; 32:2677–2681
    [Google Scholar]
  71. Paton R. H., Miles R. S., Hood J., Amyes S. G. B. ARI 1: betalactamase-mediated imipenem resistance in Acinetobacter baumannii. Int J Antimicrob Agents 1993; 2:81–88
    [Google Scholar]
  72. Brown S., Bantar C., Young H.-K. An outbreak of imipenem resistance in Acinetobacter strains from Buenos Aires, Argentina. Abstracts of the 36th Interscience Conference on Antimicrobial Agents and Chemotherapy 1996; Cl:22
    [Google Scholar]
  73. Scaife W., Young H.-K., Paton R. H., Amyes S. G. B. Transferable imipenem-resistance in Acinetobacter species from a clinical source. J Antimicrob Chemother 1995; 36:585–586
    [Google Scholar]
  74. Pérez A. N., Bonet I. G., Robledo E. H., Abascal R., Pious C. V. Metallo-β-lactamases in Acinetobacter calcoaceticusl. Med Sci Res 1996; 24:315–317
    [Google Scholar]
  75. Fass R. J., Gregory W. W., D’Amato R. F., Matsen J. M., Wright D. N., Young L. S. In vitro activities of cefoperazone and sulbactam singly and in combination against cefoperazone-resistant members of the family Enterobacteriaceae and non-fermenters. Antimicrob Agents Chemother 1990; 34:2256–2259
    [Google Scholar]
  76. Obana Y., Nishino T. In-vitro and in-vivo activities of sulbactam and YTR830H against Acinetobacter calcoaceticus. J Antimicrob Chemother 1990; 26:677–682
    [Google Scholar]
  77. Aubert G., Guichard D., Vedel G. In-vitro activity of cephalosporins alone and combined with sulbactam against various strains of Acinetobacter baumannii with different antibiotic resistance profiles. J Antimicrob Chemother 1996; 37:155–160
    [Google Scholar]
  78. Soussy C. F. Sensibilite aux aminosides: bilan annuel d’un CHU. Lett Infectiol 1995 juin 6–10
    [Google Scholar]
  79. Miller G. H. and the aminoglycoside study groups. Increasing complexity of aminoglycoside resistance mechanisms in gram-negative bacteria. APUA Newsletter 1994; 12:5–8
    [Google Scholar]
  80. Lambert T., Gerbaud G., Courvalin P. Transferable amikacin resistance in Acinetobacter spp. due to a new type of 3′-aminoglycoside phosphotransferase. Antimicrob Agents Chemother 1988; 32:15–19
    [Google Scholar]
  81. Lambert T., Gerbaud G., Courvalin P. Characterization of transposon Tn1528, which confers amikacin resistance by synthesis of aminoglycoside 3′-O-phosphotransferase type VI. Antimicrob Agents Chemother 1994; 38:702–706
    [Google Scholar]
  82. Recchia G. D., Hall R. M. Gene cassettes: a new class of mobile element. Microbiology 1995; 141:3015–3027
    [Google Scholar]
  83. Lambert T., Gerbaud G., Courvalin P. Characterization of the chromosomal aac(6′)-Ij gene of Acinetobacter sp. 13 and the aac(6′)-Ih plasmid gene of Acinetobacter baumannii. Antimicrob Agents Chemother 1994; 38:1883–1889
    [Google Scholar]
  84. Lambert T., Gerbaud G., Galimand M., Courvalin P. Characterization of Acinetobacter haemolyticus aac(6′)-Ig gene encoding an aminoglycoside 6′-A′-acetyltransferase which modifies amikacin. Antimicrob Agents Chemother 1993; 37:2093–2100
    [Google Scholar]
  85. Rudant E., Bourlioux P., Courvalin P., Lambert T. Characterization of the aac(6′)-Ik gene of Acinetobacter sp. 6. FEMS Microbiol Lett 1994; 124:49–54
    [Google Scholar]
  86. Berg K. L., Squires C. L., Squires C. In vivo translation of a region within the rrnB 16 rRNA gene of Escherichia coli. J Bacteriol 1987; 169:1691–1701
    [Google Scholar]
  87. Ploy M.-C., Giamarellou H., Bourlioux P., Courvalin P., Lambert T. Detection of aac(6′)-I genes in amikacin-resistant Acinetobacter spp. by PCR. Antimicrob Agents Chemother 1994; 38:2925–2928
    [Google Scholar]
  88. Wagner L. A., Weiss R. B., Driscoll R., Dunn D. S., Gesteland R. F. Transcriptional slippage occurs during elongation at runs of adenine or thymine in Escherichia coli. Nucleic Acids Res 1990; 18:3529–3535
    [Google Scholar]
  89. Shaw K. J., Rather P. N., Hare R. S., Miller G. H. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 1993; 57:138–163
    [Google Scholar]
  90. Shaw K. J., Rather P. N., Sabatelli F. J. Characterization of the chromosomal aac(6′)-Ic gene from Serratia marcescens. Antimicrob Agents Chemother 1992; 36:1447–1455
    [Google Scholar]
  91. Rather P. N., Orosz E., Shaw K. J., Hare R., Miller G. Characterization and transcriptional regulation of the 2′-N- acetyltransferase gene from Providencia stuartii. J Bacteriol 1993; 175:6492–6498
    [Google Scholar]
  92. Snelling A. M., Hawkey P. M., Heritage J., Downey P., Bennett P. M., Holmes B. The use of a DNA probe and PCR to examine the distribution of the aac(6′)-Ic gene in Serratia marcescens and other gram-negative bacteria. J Antimicrob Chemother 1993; 31:841–854
    [Google Scholar]
  93. Tilley P. A. G., Roberts F. J. Bacteremia with Acinetobacter species: risk factors and prognosis in different clinical settings. Clin Infect Dis 1994; 18:896–900
    [Google Scholar]
  94. Beck-Sague C. M., Jarvis W. R., Brook J. H. Epidemic bacteremia due to Acinetobacter baumannii in five intensive care units. Am J Epidemiol 1990; 132:723–733
    [Google Scholar]
  95. Holton J. A report of a further hospital outbreak caused by a multi-resistant Acinetobacter anitratus. J Hosp Infect 1982; 3:305–309
    [Google Scholar]
  96. Marcos M. A., Abdalla S., Pedraza F. Epidemiological markers of Acinetobacter baumannii clinical isolates from a spinal cord injury unit. J Hosp Infect 1994; 28:39–48
    [Google Scholar]
  97. Godineau-Gauthey N., Lesage D., Tessier F., Kollia D., Daguet G. L. Acinetobacter calcoaceticus variete anitratus ou Acinetobacter baumannii. Etude de la sensibilite aux antibiotiques de 65 souches hospitalaries. Med Mai Infect 1988; 2:124–127
    [Google Scholar]
  98. King A., Phillips I. The comparative in-vitro activity of eight newer quinolones and nalidixic acid. J Antimicrob Chemother 1986; 18: Suppl D 1–20
    [Google Scholar]
  99. Rolston K. V. I., Ho D. H., Leblanc B., Gooch G., Bodely G. P. Comparative in vitro activity of the new difluoro-quinolone temafloxacin (A-62254) against bacterial isolates from cancer patients. Eur J Clin Microbiol Infect Dis 1988; 7:684–686
    [Google Scholar]
  100. Acar J. F., O’Brien T. F., Goldstein F. W., Jones R. N. The epidemiology of bacterial resistance to quinolones. Drugs 1993; 45: Suppl 324–28
    [Google Scholar]
  101. Traub W. H., Spohr M. Antimicrobial drug susceptibility of clinical isolates of Acinetobacter species (A. baumannii A. haemolyticus, genospecies 3, and genospecies 6). Antimicrob Agents Chemother 1989; 33:1617–1619
    [Google Scholar]
  102. Vila J., Marcos A. Marco, F, In vitro antimicrobial production of /3-lactamases, aminoglycoside-modifying enzymes, and chloramphenicol acetyltransferase by and susceptibility of clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 1993; 37:138–141
    [Google Scholar]
  103. Hooper D. C., Wolfson J. S. Mechanisms of bacterial resistance to quinolones. In Quinolone antibacterial agents 2nd edn Washington DC: American Society for Microbiology; 199397–118
    [Google Scholar]
  104. Cohen S. P., Hooper D. C., Wolfson J. S., Souza K. S., Mcmurry L. M., Levy S. B. Endogenous active efflux of norfloxacin in susceptible Escherichia coli. Antimicrob Agents Chemother 1988; 32:1187–1191
    [Google Scholar]
  105. Cohen S. P., McMurry L. M., Hooper D. C., Wolfson J. S., Levy S. B. Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (mar) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction. Antimicrob Agents Chemother 1989; 33:1318–1325
    [Google Scholar]
  106. Hirai K., Aoyama H., Irikura T., Iyobe S., Mitsuhashi S. Differences in susceptibility to quinolones of outer membrane mutants of Salmonella typhimurium and Escherichia coli. Antimicrob Agents Chemother 1986; 29:535–538
    [Google Scholar]
  107. Hirai K., Aoyama H., Suzue S., Irikura T., Iyobe S., Mitsuhashi S. Isolation and characterization of norfloxacin-resistant mutants of Escherichia coli K-12. Antimicrob Agents Chemother 1986; 30:248–253
    [Google Scholar]
  108. Hooper D. C., Wolfson J. S., Bozza M. A., Ng E. Y. Genetics and regulation of outer membrane protein expression by quinolone resistance loci nfxB, nfxC, and cfxB. Antimicrob Agents Chemother 1992; 36:1151–1154
    [Google Scholar]
  109. Hooper D. C., Wolfson J. S., Souza K. S., Ng E. Y., Mchugh G. L., Swartz M. N. Mechanisms of quinolone resistance in Escherichia coli: characterization of nfxB and cfxB, two mutant resistance loci decreasing norfloxacin accumulation. Antimicrob Agents Chemother 1989; 33:283–290
    [Google Scholar]
  110. Vila J., Ruiz J., Marco F. Association between double mutation in gyrA gene of ciprofloxacin-resistant clinical isolates of Escherichia coli and MICs. Antimicrob Agents Chemother 1994; 38:2477–2479
    [Google Scholar]
  111. Yamagishi J., Yoshida H., Yamayoshi H., Nakamura S. Naxildixic acid-resistant mutations of the gyrB gene of Escherichia coli. Mol Gen Genet 1986; 204:367–373
    [Google Scholar]
  112. Yoshida H., Bogaki M., Nakamura M., Yamanaka L. M., Nakamura S. Quinolone resistance-determining region in the DNA gyrase gyrB gene of Escherichia coli. Antimicrob Agents Chemother 1991; 35:1647–1650
    [Google Scholar]
  113. Nakamura S., Nakamura M., Kojima T., Yoshida H. gyrA and gyrB mutations in quinolone-resistant strains of Escherichia coli. Antimicrob Agents Chemother 1989; 33:254–255
    [Google Scholar]
  114. Ouabdesselam S., Hooper D. C., Tankovic J., Soussy C. J. Detection of gyrA and gyrB mutations in quinolone-resistant clinical isolates of Escherichia coli by single-strand conformational polymorphism analysis and determination of levels of resistance conferred by two different single gyrA mutations. Antimicrob Agents Chemother 1995; 39:1667–1670
    [Google Scholar]
  115. Khodursky A. B., Ziechiedrich E. L., Cozzarelli N. R. Topoisomerase IV is a target of quinolones in Escherichia coli. Proc Natl Acad Sci USA 1995; 92:11801–11805
    [Google Scholar]
  116. Vila J., Ruiz J., Goni P., Jimenez de Anta M. T. Detection of mutations in parC in quinolone-resistant clinical isolates of Escherichia coli. Antimicrob Agents Chemother 1996; 40:491–493
    [Google Scholar]
  117. Heisig P. Genetic evidence for a role of parC mutations in development of high-level fluoroquinolone resistance in Escherichia coli. Antimicrob Agents Chemother 1996; 40:879–885
    [Google Scholar]
  118. Marcos M. A., Jimenez de Anta M. T., Vila J. Correlation of six methods for typing nosocomial isolates of Acinetobacter baumannii. J Med Microbiol 1995; 42:328–335
    [Google Scholar]
  119. Ferrero L., Cameron B., Manse B. Cloning and primary structure of Staphylococcus aureus DNA topoisomerase IV: a primary target of fluoroquinones. Mol Microbiol 1994; 13:641–653
    [Google Scholar]
  120. Ruiz J., Casellas S., Jimenez de Anta M. T., Vila J. The region of the parE gene, homologous to the quinolone-resistant determining region of the gyrB gene, is not linked with the acquisition of quinolone resistance in Escherichia coli clinical isolates. J Antimicrob Chemother 1997 (in press)
    [Google Scholar]
  121. Sato K., Nakae T. Outer membrane permeability of Acinetobacter calcoaceticus and its implications in antibiotic resistance. J Antimicrob Chemother 1991; 28:35–45
    [Google Scholar]
  122. Angus B. L., Carey A. M., Caron D. A., Kropinski A. M. B., Hancock R. E. W. Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic-super-susceptible mutant. Antimicrob Agents Chemother 1982; 21:299–309
    [Google Scholar]
  123. Yoshimura F., Nikaido H. Permeability of Pseudomonas aeruginosa outer membrane to hydrophilic solutes. J Bacteriol 1982; 152:636–642
    [Google Scholar]
  124. Li X. Z., Livermore D. M., Nikaido H. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob Agents Chemother 1994; 38:1732–1741
    [Google Scholar]
  125. Joly-Guillou M. L., Bergogne-Berezin E., Vieu J. F. Epidemiology of Acinetobacter strains isolated from nosocomial infections in France. In Towner K. J., Bergogne-Berezin E., Fewson C. A. (eds) The biology of Acinetobacter: taxonomy, clinical importance, molecular biology, physiology, industrial relevance New York: Plenum; 199163–68
    [Google Scholar]
  126. Obana Y. Pathogenic significance of Acinetobacter calcoaceticus: analysis of experimental infection in mice. Microbiol Immunol 1986; 30:645–657
    [Google Scholar]
  127. Wolff M., Joly-Guillou M. L. In-vivo efficacy of β-lactamase inhibitors alone and in combination against Acinetobacter baumannii in a mouse pneumonia model. Program and abstracts of the 36th Interscience Conference on Antimicrobial Agents and Chemotherapy Washington, DC: American Society for Microbiology; 1996 abstract B61
    [Google Scholar]
  128. Davis B. D., Dulbecco R., Eisen H. N., Ginsberg H. S., Wood W. B. Microbiology; including immunology and molecular genetics. 2nd edn Hagerstown: Harper and Row; 1973751
    [Google Scholar]
  129. Mayhall C. G. Infections in bum patients. In Wenzel R. P. (ed) CRC handbook of hospital infections Boca Raton: CRC Press; 1981317–339
    [Google Scholar]
  130. Chastre J., Trouillet J.-L., Vuagnat A. Joly-Guillou, M-L. Nosocomial pneumonia caused by Acinetobacter spp. In Bergogne-Berezin E., Joly-Guillou M. L., Towner K. J. (eds) Acinetobacter: microbiology, epidemiology, infections, management Boca Raton: CRC Press; 1996117–132
    [Google Scholar]
  131. Fagon J. Y., Chastre J., Hance A. J., Montravers P., Novara A., Gibert C. Nosocomial pneumonia in ventilated patients: a cohort study evaluating attributable mortality and hospital stay. Am J Med 1993; 94:281–288
    [Google Scholar]
  132. Fagon J. Y., Chastre J., Domart Y. Nosocomial pneumonia in patients receiving continuous mechanical ventilation. Prospective analysis of 52 episodes with use of a protected specimen brush and quantitative culture techniques. Am Rev Respir Dis 1989; 139:877–884
    [Google Scholar]
  133. Levi I., Rubinstein E. Acinetobacter infections - overview of clinical features. In Bergogne-Berezin E., Joly-Guillou M. L., Towner K. J. (eds) Acinetobacter: microbiology, epidemiology, infections, management Boca Raton: CRC Press; 1996101–115
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-46-9-721
Loading
/content/journal/jmm/10.1099/00222615-46-9-721
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error