1887

Abstract

Although does not generally produce urease, several studies have reported urease-positive isolates from clinical sources. Recently, studies have shown a complete coincidence between the urease-producing phenotype of strains and the possession of the thermostable direct haemolysin (TDH)-related haemolysin (TRH) gene (). TRH, like TDH, is considered to be an important virulence factor in the pathogenesis of gastroenteritis. The present study attempted to identify the gene encoding urease in to clarify the relationship between urease production and possession of The polymerase chain reaction with mixed oligonucleotide primers targeted for conserved sequences of reported genes from other species was used to prepare a DNA probe to detect the gene. Colony hybridisation with this probe demonstrated that all the -positive strains produced urease. Considering the coincidence between production of urease and possession of in , it was concluded that the presence or absence of the gene is completely coincident with that of the gene in strains. Furthermore, the relative location of and on chromosomal DNA was analysed by pulsed-field gel electrophoresis. The results showed that, in all the strains examined, and were detected on the same I fragment, showing that the two genes localise within a relatively small portion of the chromosome DNA. These results suggest that the and genes are genetically linked in strains.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-46-8-639
1997-08-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmm/46/8/medmicro-46-8-639.html?itemId=/content/journal/jmm/10.1099/00222615-46-8-639&mimeType=html&fmt=ahah

References

  1. Honda T., Iida T. The pathogenicity of Vibrio parahaemolyticus and the role of the thermostable direct haemolysin and related haemolysin. Rev Med Microbiol 1993; 4:106–113
    [Google Scholar]
  2. Sakazaki R., Tamura K., Kato T., Obara Y., Yamai S. Studies on the enteropathogenic, facultatively halophilic bacterium, Vibrio parahaemolyticus. III. Enteropathogenicity. Jpn J Med Sci Biol 1968; 21:325–331
    [Google Scholar]
  3. Honda S.-I., Goto I., Minematsu I. Gastroenteritis due to Kanagawa negative Vibrio parahaemolyticus . Lancet 1987; 1:331–332
    [Google Scholar]
  4. Honda T., Ni Y., Miwatani T. Purification and characterization of a hemolysin produced by a clinical isolate of Kanagawa phenomenon-negative Vibrio parahaemolyticus and related to the thermostable direct hemolysin. Infect Immun 1988; 56:961–965
    [Google Scholar]
  5. Honda T., Ni Y., Hata A. Properties of a hemolysin related to the thermostable direct hemolysin produced by a Kanagawa phenomenon negative, clinical isolate of Vibrio parahaemolyticus . Can J Microbiol 1990; 36:395–399
    [Google Scholar]
  6. Shirai H., Ito H., Hirayama T. Molecular epidemiologic evidence for association of thermostable direct hemolysin (TDH) and TDH-related hemolysin of Vibrio parahaemolyticus with gastroenteritis. Infect Immun 1990; 58:3568–3573
    [Google Scholar]
  7. Abbott S. L., Powers C., Kaysner C. A. Emergence of a restricted bioserovar of Vibrio parahaemolyticus as the predominant cause of Vibrio-associated gastroenteritis on the west coast of the United States and Mexico. J Clin Microbiol 1989; 27:2891–2893
    [Google Scholar]
  8. Eko F. O. Urease production in Vibrio parahaemolyticus-. a potential marker for virulence. Eur J Epidemiol 1992; 8:627–628
    [Google Scholar]
  9. Honda S., Matsumoto S., Miwatani T., Honda T. A survey of urease-positive Vibrio parahaemolyticus strains isolated from traveller’s diarrhea, sea water and imported frozen sea foods. Eur J Epidemiol 1992; 8:861–864
    [Google Scholar]
  10. Huq M. I., Huber D., Kibryia G. Isolation of urease producing Vibrio parahaemolyticus strains from cases of gastroenteritis. Indian J Med Res 1979; 70:549–553
    [Google Scholar]
  11. Jegathesan M., Paramasivam T. A strain of urease-producing Vibrio parahaemolyticus isolated in Malaysia. J Diarrhoeal Dis Res 1985; 3:162
    [Google Scholar]
  12. Kaysner C. A., Aberta C., Trost P. A. Urea hydrolysis can predict the potential pathogenicity of Vibrio parahaemolyticus strains isolated in the Pacific Northwest. Appl Environ Microbiol 1994; 60:3020–3022
    [Google Scholar]
  13. Kelly M. T., Stroh E. M.D. Urease-positive, Kanagawa-negative Vibrio parahaemolyticus from patients and the environment in the Pacific Northwest. J Clin Microbiol 1989; 27:2820–2822
    [Google Scholar]
  14. Lam S., Yeo M. Urease-positive Vibrio parahaemolyticus strain. J Clin Microbiol 1980; 12:57–59
    [Google Scholar]
  15. Magalhaes M., Magalhaes V., Antas M. G., Tateno S. Isolation of urease-positive Vibrio parahaemolyticus from diarrheal patients in northeast Brazil. Rev Inst Med Trop Sao Paulo 1991; 33:263–265
    [Google Scholar]
  16. Oberhofer T. R., Podgore J. K. Urea-hydrolyzing Vibrio parahaemolyticus associated with acute gastroenteritis. J Clin Microbiol 1982; 16:581–583
    [Google Scholar]
  17. Suthienkul O., Ishibashi M., Lida T. Urease production correlates with possession of the trh gene in Vibrio parahaemolyticus strains isolated in Thailand. J Infect Dis 1995; 172:1405–1408
    [Google Scholar]
  18. Suzuki N., Ueda Y., Mori H. [Serotypes of urease producing Vibrio parahaemolyticus and their relation to possession of tdh and trh genes.]. Kansenshogaku Zasshi 1994; 68:1068–1074
    [Google Scholar]
  19. Yamamoto K., Honda T., Miwatani T., Tamatsukuri S., Shibata S. Enzyme-labeled oligonucleotide probes for detection of the genes for thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) of Vibrio parahaemolyticus . Can J Microbiol 1992; 32:410–416
    [Google Scholar]
  20. Lida T., Yamamoto K. Cloning and expression of two genes encoding highly homologous hemolysins from a Kanagawa phenomenon-positive Vibrio parahaemolyticus T4750 strain. Gene 1990; 93:9–15
    [Google Scholar]
  21. Sambrook J., Fritsch E. F., Maniatis T. Molecular cloning: a laboratory manual. 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989
    [Google Scholar]
  22. Wilson K. Preparation of genomic DNA from bacteria. In Ausubel F. M., Brent R., Kingston R. E. (eds) Current protocols in molecular biology vol 1 New York: John Wiley and Sons; 19872.4.1–2.4.2
    [Google Scholar]
  23. Smith C. L., Cantor C. R. Purification, specific fragmentation, and separation of large DNA molecules. Methods Enzymol 1987; 155:449–467
    [Google Scholar]
  24. Suthienkul O., Lida T., Park K.-S. Restriction fragment length polymorphism of the tdh and trh genes in clinical Vibrio parahaemolyticus strains. J Clin Microbiol 1996; 34:1293–1295
    [Google Scholar]
  25. Mulrooney S. B., Hausinger R. P. Sequence of the Klebsiella aerogenes urease genes and evidence for accessory proteins facilitating nickel incorporation. J Bacteriol 1990; 172:5837–5843
    [Google Scholar]
  26. Nishibuchi M., Taniguchi T., Misawa T., Khaeomaneeiam Y., Honda T., Miwatani T. Cloning and nucleotide sequence of the gene (trh) encoding the hemolysin related to the thermostable direct hemolysin of Vibrio parahaemolyticus . Infect Immun 1989; 57:2691–2697
    [Google Scholar]
  27. Osawa R., Okitsu T., Morozumi H., Yamai S. Occurrence of urease-positive Vibrio parahaemolyticus in Kanagawa, Japan, with specific reference to presence of thermostable direct hemolysin (TDH) and the TDH-related-hemolysin genes. Appl Environ Microbiol 1996; 62:725–727
    [Google Scholar]
  28. Suzuki N., Ueda Y., Mori H. [Correlation between trh possession and urease production of clinical isolates of Vibrio parahaemolyticus.]. Kansenshogaku Zasshi 1995; 69:757–758
    [Google Scholar]
  29. Nishibuchi M., Janda J. M., Ezaki T. The thermostable direct hemolysin gene (tdh) of Vibrio hollisae is dissimilar in prevalence to and phylogenetically distant from the tdh genes of other vibrios: implications in the horizontal transfer of the tdh gene. Microbiol Immunol 1996; 40:59–65
    [Google Scholar]
  30. Nishibuchi M., Kaper J. B. Thermostable direct hemolysingene of Vibrio parahaemolyticus-. a virulence gene acquired by a marine bacterium. Infect Immun 1995; 63:2093–2099
    [Google Scholar]
  31. Terai A., Baba K., Shirai H., Yoshida O., Takeda Y., Nishibuchi M. Evidence for insertion sequence-mediated spread of the thermostable direct hemolysin gene among Vibrio species. J Bacteriol 1991; 173:5036–5046
    [Google Scholar]
  32. Clemens D. L., Lee B.-Y., Horwitz M. A. Purification, characterization, and genetic analysis of Mycobacterium tuberculosis urease, a potentially critical determinant of host-pathogen interaction. J Bacteriol 1995; 177:5644–5652
    [Google Scholar]
  33. De Koning-Ward T. F., Robins-Browne R. M. Contribution of urease to acid tolerance in Yersinia enterocolitica . Infect Immun 1995; 63:3790–3795
    [Google Scholar]
  34. Mobley H. L.T., Island M. D., Hausinger R. P. Molecular biology of microbial ureases. Microbiol Rev 1995; 59:451–480
    [Google Scholar]
  35. Smoot D. T., Mobley H. L.T., Chippendale G. R., Lewison J. F., Resau J. H. Helicobacter pylori urease activity is toxic to human gastric epithelial cells. Infect Immun 1990; 58:1992–1994
    [Google Scholar]
  36. Xu M., Yamamoto K., Honda T. Construction and characterization of an isogenic mutant of Vibrio parahaemolyticus having a deletion in the thermostable direct hemolysin-related hemolysin gene (trh) . J Bacteriol 1994; 176:4757–4760
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-46-8-639
Loading
/content/journal/jmm/10.1099/00222615-46-8-639
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error