1887

Abstract

An exotoxin lethal to cells in culture (cytolethal toxin, CLT) was identified in culture filtrates of , the causative organism of melioidosis. CLT could pass through a 10-kDa cut-off ultrafilter and its properties suggest that it is a peptide. Isolates from soil, animals and man showed differential cytolethality . The isolates were divided into low, medium and high CLT producers with soil isolates being low producers and isolates from patients with melioidosis encephalitis being high producers. CLT levels are subject to regulation, as a strain isolated from an infected goat was one of the highest producers whereas the same strain isolated from soil was a low producer. In addition to CLT, all isolates produced a protein with cell-elongating activity which was also present in culture filtrates.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-46-7-557
1997-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/46/7/medmicro-46-7-557.html?itemId=/content/journal/jmm/10.1099/00222615-46-7-557&mimeType=html&fmt=ahah

References

  1. Merianos A., Patel M., Lane J. M. The 1990-1991 outbreak of melioidosis in the Northern Territory of Australia: epidemiology and environmental studies. Southeast Asian J Trop Med Public Health 1993; 24:425–435
    [Google Scholar]
  2. Currie B., Howard D., Nguyen V. T., Withnall K., Merianos A. The 1990-1991 outbreak of melioidosis in the Northern Territory of Australia: clinical aspects. Southeast Asian J Trop Med Public Health 1993; 24:436–443
    [Google Scholar]
  3. Kanai K., Kondo E. Recent advances in biomedical sciences of Burkholderia pseudomallei (basonym: Pseudomonas pseudomallei). Jpn J Med Sci Biol 1994; 47:1–45
    [Google Scholar]
  4. Chaowagul W., White N. J., Dance D. A. B. Melioidosis: a major cause of community-acquired septicemia in northern Thailand. J Infect Dis 1989; 159:890–899
    [Google Scholar]
  5. Mays E. E., Ricketts E. A. Melioidosis: recrudescence associated with bronchogenic carcinoma twenty-six years following initial geographic exposure. Chest 1975; 68:261–263
    [Google Scholar]
  6. Haase A., Melder A., Smith-Vaughan H., Kemp D., Currie B. RAPD analysis of isolates of Burkholderia pseudomallei from patients with recurrent melioidosis. Epidemiol Infect 1995; 115:115–121
    [Google Scholar]
  7. Chaowagul W., Supputtamongkol Y., Dance D. A., Rajchanuvong A., Pattara-arechachai J., White N. J. Relapse in melioidosis: incidence and risk factors. J Infect Dis 1993; 168:1181–1185
    [Google Scholar]
  8. Woods M. L., Currie B. J., Howard D. M. Neurological melioidosis: seven cases from the Northern Territory of Australia. Clin Infect Dis 1992; 15:163–169
    [Google Scholar]
  9. Heckly R. J., Nigg C. Toxins of Pseudomonas pseudomallei II. Characterization. J Bacteriol 1958; 76:427–436
    [Google Scholar]
  10. Heckly R. J. Differentiation of exotoxin and other biologically active substances in Pseudomonas pseudomallei filtrates. J Bacteriol 1964; 88:1730–1736
    [Google Scholar]
  11. Sexton M. M., Jones A. L., Chaowagul W., Woods D. E. Purification and characterization of a protease from Pseudomonas pseudomallei. Can J Microbiol 1994; 40:903–910
    [Google Scholar]
  12. Mohamed R., Nathan S., Embi N., Razak N., Ismail G. Inhibition of macromolecular synthesis in cultured macrophages by Pseudomonas pseudomallei exotoxin. Microbiol Immunol 1989; 33:811–820
    [Google Scholar]
  13. Ismail G., Noor Embi N., Omar O., Allen J. C., Smith C. J. A competitive immunosorbent assay for detection of Pseudomonas pseudomallei exotoxin. J Med Microbiol 1987; 23:353–357
    [Google Scholar]
  14. Haase A., Smith-Vaughan H., Melder A. Subdivision of Burkholderia pseudomallei into multiple types by random amplified polymorphic DNA analysis provides new insights into epidemiology. J Clin Microbiol 1995; 33:1687–1690
    [Google Scholar]
  15. Scott D. A., Kaper J. B. Cloning and sequencing of the genes encoding Escherichia coli cytolethal distending toxin. Infect Immun 1994; 62:244–251
    [Google Scholar]
  16. Okuda J., Kurazono H., Takeda Y. Distribution of the cytolethal distending toxin A gene (cdtA) among species of Shigella and Vibrio, and cloning and sequencing of the cdt gene from Shigella dysenteriae. Microb Pathog 1995; 18:167–172
    [Google Scholar]
  17. Pickett C. L., Cottle D. L., Pesci E. C., Bikah G. Cloning, sequencing, and expression of the Escherichia coli cytolethal distending toxin genes. Infect Immun 1994; 62:1046–1051
    [Google Scholar]
  18. Bag P. K., Ramamurthy T., Nair U. B. Evidence for the presence of a receptor for the cytolethal distending toxin (CLDT) of Camplyobacter jejuni on CHO and HeLa cell membranes and development of a receptor-based enzyme-linked immunosorbent assay for detection of CLDT. FEMS Microbiol Lett 1993; 114:285–291
    [Google Scholar]
  19. Kothary M. H., Claverie E. F., Miliotis M. D., Madden J. M., Richardson S. H. Purification and characterization of a Chinese hamster ovary cell elongation factor of Vibrio hollisae. Infect Immun 1995; 63:2418–2423
    [Google Scholar]
  20. Johnson W. M., Lior H. A new heat-labile cytolethal distending toxin (CLDT) produced by Campylobacter spp. Microb Pathog 1988; 4:115–126
    [Google Scholar]
  21. Middlebrook J. L., Dorland R. B. Response of cultured mammalian cells to the exotoxins of Pseudomonas aeruginosa and Corynebacterium diphtheriae: differential cytotoxicity. Can J Microbiol 1977; 23:183–189
    [Google Scholar]
  22. Gray G. L., Smith D. H., Baldridge J. S. Cloning, nucleotide sequence, and expression in Escherichia coli of the exotoxin A structural gene of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 1984; 81:2645–2649
    [Google Scholar]
  23. Blanke S. R., Huang K., Wilson B. A., Papini E., Covacci A., Collier R. J. Active-site mutations of the diphtheria toxin catalytic domain: role of histidine-21 in nicotinamide adenine dinucleotide binding and ADP-ribosylation of elongation factor 2. Biochemistry 1994; 33:5155–5161
    [Google Scholar]
  24. Taichman N. S., Iwase M., Lally E. T., Shattil S. J., Cunningham M. E., Korchak H. M. Early changes in cytosolic calcium and membrane potential induced by Actinobacillus actinomycetem-comitans leukotoxin in susceptible and resistant target cells. J Immunol 1991; 147:3587–3594
    [Google Scholar]
  25. Dreyfus L. A., Harville B., Howard D. E., Shaban R., Beatty D. M., Morris S. J. Calcium influx mediated by the Escherichia coli heat-stable enterotoxin B (STB). Proc Natl Acad Sci USA 1993; 90:3202–3206
    [Google Scholar]
  26. Thomas A. D., Forbes-Faulkner J., Parker M. Isolation of Pseudomonas pseudomallei from clay layers at definite depths. Am J Epidemiol 1979; 110:515–521
    [Google Scholar]
  27. Jones A. L., Beveridge T. J., Woods D. E. Intracellular survival of Burkholderia pseudomallei. Infect Immun 1996; 64:782–790
    [Google Scholar]
  28. Anderson J. D., MacNab A. J., Gransden W. R., Damm S. M., Johnson W. M., Lior H. Gastroenteritis and encephalopathy associated with a strain of Escherichia coli 055 K59:H4 that produced a cytolethal distending toxin. Pediatr Infect Dis J 1987; 6:1135–1136
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-46-7-557
Loading
/content/journal/jmm/10.1099/00222615-46-7-557
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error