Identification of heparan sulphate binding surface proteins of : inhibition of heparan sulphate binding with sulphated carbohydrate polymers Free

Abstract

Heparan sulphate binding to cells of the gastric pathogen at pH 4–6 is common. Binding was inhibited by various unlabelled sulphated polysaccharides and at high ionic strength and pH, but not by carboxylated or non-sulphated compounds. The inhibition by various sulphated compounds such as dextran sulphate and carrageenans was related to the sulphate content and not to the carbohydrate polymer backbone. The IC50 values for heparin and dextran sulphate for strain 25 were calculated as 3.55 × 10 M and 5.01 × 10 M respectively. Heparin-binding proteins of are exposed on the cell surface, as shown by biotinylation of cell-surface proteins before separation of outer membranes and by an indirect immunofluorescence assay. The strongest biotin-heparin binding by was observed with a polypeptide in the 55-60 kDa region.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-46-7-541
1997-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/46/7/medmicro-46-7-541.html?itemId=/content/journal/jmm/10.1099/00222615-46-7-541&mimeType=html&fmt=ahah

References

  1. Lindahl U. , Lidholt K. , Spillmann D. , Kjellen L. . More to “heparin” than anticoagulation. Thromb Res 1994; 75:1–32
    [Google Scholar]
  2. Baba M. , Pauwels R. , Balzarini J. , Amout J. , Desmyter J. , de Clercq E. . Mechanism of inhibitory effect of dextran sulfate and heparin on replication of human immunodeficiency virus in vitro. Proc Natl Acad Sci USA 1988; 85:6132–6136
    [Google Scholar]
  3. Butcher B. A. , Sklar L. A. , Seamer L. C. , Glew R. H. . Heparin enhances the interaction of infective Leishmania donovani promastigotes with mouse peritoneal macrophages. A fluorescence flow cytometric analysis. J Immunol 1992; 148:2879–2886
    [Google Scholar]
  4. Choi S. H. , Stinson M. W. . Purification of a Streptococcus mutans protein that binds to heart tissue and glycosaminoglycans. Infect Immun 1989; 57:3834–3840
    [Google Scholar]
  5. Frevert U. , Sinnis P. , Cerami C. , Shreffler W. , Takacs B. , Nussenzweig V. . Malaria circumsporozoite protein binds to heparan sulphate proteoglycans associated with the surface membrane of hepatocytes. J Exp Med 1993; 177:1287–1298
    [Google Scholar]
  6. Kulane A. , Ekre H. P. , Perlmann P. , Rombo L. , Wahlgren M. , Wahlin B. . Effect of different fractions of heparin on Plasmodium falciparum merozoite invasion of red blood cells in vitro. Am J Trop Med Hyg 1992; 46:589–594
    [Google Scholar]
  7. Lycke E. , Johansson M. , Svennerholm B. , Lindahl U. . Binding of herpes simplex virus to cellular heparan sulphate, an initial step in the adsorption process. J Gen Virol 1991; 72:1131–1137
    [Google Scholar]
  8. McClure M. O. , Moore J. P. , Blanc D. F. . Investigations into the mechanism by which sulfated polysaccharides inhibit HIV infection in vitro. AIDS Res Hum Retroviruses 1992; 8:19–26
    [Google Scholar]
  9. Ortega-Barria E. , Pereira M. E. A. . Entry of Trypanozoma cruzi into eukaryotic cells. Infect Agents Dis 1992; 1:136–145
    [Google Scholar]
  10. Pancake S. J. , Holt G. D. , Mellouk S. , Hoffman S. L. . Malaria sporozoites and circumsporozoite proteins bind specifically to sulfated glycoconjugates. J Cell Biol 1992; 117:1351–1357
    [Google Scholar]
  11. Stephens R. S. . Molecular mimicry and Chlamydia-host cell interactions. In Mardh P. A. , La Placa M. , Ward M. . (eds) Proceedings of the European Society for Chlamydia Research Stockholm: Sept 19926–10
    [Google Scholar]
  12. Trybala E. , Svennerholm B. , Bergstrom T. , Olofsson S. , Jeansson S. , Goodman J. L. . Herpes simplex virus type 1 induced hemagglutination: glycoprotein C mediates virus binding to erythrocyte surface heparan sulfate. J Virol 1993; 67:1278–1285
    [Google Scholar]
  13. Vaudaux P. , Avramoglou T. , Letoumeur D. , Lew D. P. , Jozefonvicz J. . Inhibition by heparin and derivatized dextrans of Staphylococcus aureus adhesion to fibronectin-coated biomaterials. J Biomater Sci Polym Ed 1992; 4:89–97
    [Google Scholar]
  14. Ljungh A. , Wadstrom T. . Binding of extracellular matrix proteins by microbes. Methods Enzymol 1995; 253:501–514
    [Google Scholar]
  15. Wadstrom T. , Ringner M. , Valkonen K. H. . Interactions of microbial lectins and extracellular matrix. Zentralbl Bakteriol 1994; 25: Suppl 73–87
    [Google Scholar]
  16. Liang O. D. , Ascencio F. , Fransson L.-A. , Wadstrom T. . Binding of heparan sulphate to Staphylococcus aureus. Infect Immun 1992; 60:899–906
    [Google Scholar]
  17. Ascencio F. , Fransson L. A. , Wadstrom T. . Affinity of the gastric pathogen Helicobacter pylori for the N-suIphated glycosaminoglycan heparan sulphate. J Med Microbiol 1993; 38:240–244
    [Google Scholar]
  18. Stephens R. S. . Molecular mimicry and Chlamydia trachomatis infection of eukaryotic cells. Trends Microbiol 1994; 2:99–101
    [Google Scholar]
  19. Hirmo S. , Utt M. , Ringner M. , Wadstrom T. . Inhibition of heparan sulphate and other glycosaminoglycans binding to Helicobacter pylori by various polysulphated carbohydrates. FEMS Immunol Med Microbiol 1995; 10:301–306
    [Google Scholar]
  20. Soltesz V. , Schalen C. , Mardh P. A. . New selective medium for Campylobacter pylori. In Kaijser B. , Falsen E. . (eds) Proceedings of the Fourth International Workshop on Campylobacter Infection Gothenburg, Sweden: 1988433–436
    [Google Scholar]
  21. Fransson L.-A. , Havsmark B. , Silverberg I. . A method for the sequence analysis of dermatan sulphate. Biochem J 1990; 269:381–388
    [Google Scholar]
  22. Doig P. , Trust T. J. . Identification of surface-exposed outer membrane antigens of Helicobacter pylori. Infect Immun 1994; 62:4526–4533
    [Google Scholar]
  23. Laemmli U. K. . Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  24. Fransson L.-A. . Structure and functions of cell associated proteoglycans: FIBS 12. Elsevier; 1987406–411
  25. Trust T. J. , Doig P. , Emödy L. , Kienle Z. , Wadström T. , O’Toole P. . High-affinity binding of the basement membrane proteins collagen type IV and laminin to the gastric pathogen Helicobacter pylori. Infect Immun 1991; 59:4398–4404
    [Google Scholar]
  26. Valkonen K. H. , Ringnér M. , Ljungh A. , Wadström T. . High-affinity binding of laminin by Helicobacter pylori: evidence for a lectin-like interaction. FEMS Microbiol Immunol 1993; 7:29–37
    [Google Scholar]
  27. Borén T. , Falk P. , Roth K. A. , Larson G. , Normark S. . Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 1993; 262:1892–1895
    [Google Scholar]
  28. Chen J. C.-R. , Stephens R. S. . Trachoma and LGV biovars of Chlamydia trachomatis share the same glycosaminoglycan-dependent mechanism for infection of eukaryotic cells. Mol Microbiol 1994; 11:501–507
    [Google Scholar]
  29. Ortega-Barria E. , Pereira M. E. A. . A novel T. cruzi heparinbinding protein promotes fibroblast adhesion and penetration of engineered bacteria and Trypanozomes into mammalian cells. Cell 1991; 67:411–421
    [Google Scholar]
  30. Blaser M. J. . Pathogenesis of Helicobacter pylori-induced inflammation: a “slow” bacterial infection?. Eur J Gastroenterol Hepatol 1992; 4: Suppl 117–19
    [Google Scholar]
  31. Blaser M. J. . Hypothesis on the pathogenesis and natural history of Helicobacter pylori-induced inflammation. Gastroenterology 1992; 102:720–727
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-46-7-541
Loading
/content/journal/jmm/10.1099/00222615-46-7-541
Loading

Data & Media loading...

Most cited Most Cited RSS feed