Infection and coronary heart disease Free

Abstract

A large body of evidence exists that implicates a number of microbial agents in the pathogenesis of coronary heart disease (CHD). This, if proven, may have far-reaching implications for the prevention and treatment of CHD and other atherosclerotic disease. The histopathology of atherosclerosis and its natural history suggest infectious causation at many points along the progression of disease, particularly with regard to CHD, and a number of pathogens have been the focus of study. Viral agents implicated include Coxsackie B virus, for which tenuous sero-epidemiological associations exist, and the Herpesviridae. The animal herpesvirus causing Marek’s disease in chickens causes atherosclerotic lesions in these animals. Herpes simplex virus I and II have been found in aortic smooth muscle and produce changes in smooth muscle that are similar to those seen at the beginning of atherosclerosis and which may also explain some of the features of atherosclerotic complications. Cytomegalovirus is implicated more strongly sero-epidemiologically by in-vivo detection in atherosclerotic lesions and by its links with post-cardiac transplant vasculopathy - a syndrome similar to atherosclerosis. Bacteria have also been shown to have links with CHD. and have both been associated sero-epidemiologically with CHD, and these findings have been consolidated by recent work showing their presence in atherosclerotic lesions in adults. Bacterial infections in general lead to many changes in lipid, thrombic and other acute-phase protein metabolism, and some of these changes occur with both and infections. The ubiquity and similar epidemiological features to CHD of all these microbial pathogens make the resolution of the causative issue impossible by retrospective means. All that can be shown at present are a variety of weak and strong links, the significance of which can only be determined by large and perhaps lifetime prospective studies.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-46-7-535
1997-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/46/7/medmicro-46-7-535.html?itemId=/content/journal/jmm/10.1099/00222615-46-7-535&mimeType=html&fmt=ahah

References

  1. Spodick D. H., Flessas A. P., Johnson M. M. Association of acute respiratory symptoms with onset of acute myocardial infarction: prospective investigation of 150 consecutive patients and matched control patients. Am J Cardiol 1984; 53:481–482
    [Google Scholar]
  2. Burch G. E., Shewey L. L. Viral coronary arteritis and myocardial infarction. Am Heart J 1976; 92:11–14
    [Google Scholar]
  3. Abe J., Kotzin B. L., Jujo K. Selective expansion of T cells expressing T-cell receptor variable regions V/32 and V/38 in Kawasaki disease. Proc Natl Acad Sci USA 1992; 89:4066–4070
    [Google Scholar]
  4. Sohal R. S., Burch G. E., Chu K. C., Leiderman E., Colcolough H. L. Ultrastructural changes in cardiac capillaries of Coxsackie B4-infected mice. Lab Invest 1968; 19:399–405
    [Google Scholar]
  5. Nicholls A. C., Thomas M. Coxsackie virus infection in acute myocardial infarction. Lancet 1977; 1:883–884
    [Google Scholar]
  6. Woods J. D., Nimmo M. J., Mackay-Scollay E. M. Acute transmural myocardial infarction associated with active Coxsackie virus B infection. Am Heart J 1975; 89:283–287
    [Google Scholar]
  7. Wood S. F., Rogen A. S., Bell E. J., Grist N. R. Role of Coxsackie B viruses in myocardial infarction. Br Heart J 1978; 40:523–525
    [Google Scholar]
  8. O’Neill D., McArthur J. D., Kennedy J. A., Clements G. Coxsackie B virus infection in coronary care unit patients. J Clin Pathol 1983; 36:658–661
    [Google Scholar]
  9. Benditt E. P., Benditt J. M. Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci USA 1973; 70:1753–1756
    [Google Scholar]
  10. Fabricant C. G., Fabricant J., Minick C. R., Litrenta M. M. Herpesvirus-induced atherosclerosis in chickens. Fed Proc 1983; 42:2476–2479
    [Google Scholar]
  11. Benditt E. P., Barrett T., McDougall J. K. Viruses in the etiology of atherosclerosis. Proc Natl Acad Sci USA 1983; 80:6386–6389
    [Google Scholar]
  12. Yamashiroya H. M., Ghosh L., Yang R., Robertson A. L. Herpes-viridae in the coronary arteries and aorta of young trauma victims. Am J Pathol 1988; 130:71–79
    [Google Scholar]
  13. Petrie B. L., Melnick J. L., Adam E., Bureck J., McCollum C. H., DeBakey M. E. Nucleic acid sequence of cytomegalovirus in cells cultured from human arterial tissue. J Infect Dis 1987; 155:158–159
    [Google Scholar]
  14. Gyorkey F., Melnick J. L., Guinn G. A., Gyorkey P., DeBakey M. E. Herpesviridae in the endothelial and smooth muscle cells of the proximal aorta of atherosclerosis patients. Exp Mol Pathol 1984; 40:328–339
    [Google Scholar]
  15. Hendricks M. G. R., Salimens M. M. M., Vauboven C. P. A., Bruggeman C. A. High prevalence of latently present cytomegalovirus in arterial walls of patients suffering from grade III atherosclerosis. Am J Pathol 1990; 136:23–28
    [Google Scholar]
  16. Speir E., Modali R., Huang E.-S. Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science 1994; 265:391–394
    [Google Scholar]
  17. Dummer S., Lee A., Breinig M. K., Kormos R., Ho M., Griffith B. Investigation of cytomegalovirus infection as a risk factor for coronary atherosclerosis in the explanted hearts of patients undergoing heart transplantation. J Med Virol 1994; 44:305–309
    [Google Scholar]
  18. Kol A., Sperti G., Shani J. Cytomegalovirus replication is not a cause of instability in unstable angina. Circulation 1995; 91:1910–1913
    [Google Scholar]
  19. Ventura H. O., Mehra M. R., Smart F. W., Stapleton D. D. Cardiac allograft vasculopathy: current concepts. Am Heart J 1995; 129:791–798
    [Google Scholar]
  20. Normann S. J., Salomon D. R., Leelachaikul P. Acute vascular rejection of the coronary arteries in human heart transplantation: pathology and correlations with immunosuppression and cytomegalovirus infection. J Heart Lung Transplant 1991; 10:674–687
    [Google Scholar]
  21. Koskinen P. K., Nieminen M. S., Krogerus L. A. Cytomegalovirus infection and accelerated cardiac allograft vasculopathy in human cardiac allografts. J Heart Lung Transplant 1993; 12:724–729
    [Google Scholar]
  22. Koskinen P. K., Nieminen M. S., Krogerus L. A. Cytomegalovirus infection accelerates cardiac allograft vasculopathy: correlation between angiographic and endomyocardial biopsy findings in heart transplant patients. Transpl Int 1993; 6:341–347
    [Google Scholar]
  23. Etingin O. R., Silverstein R. L., Friedman H. M., Hajjar D. P. Viral activation of the coagulation cascade: molecular interactions at the surface of infected endothelial cells. Cell 1990; 61:657–662
    [Google Scholar]
  24. Hajjar D. P., Pomerantz K. B., Falcone D. J., Weksler B. B., Grant A. J. Herpes simplex virus infection in human arterial cells: implications in atherosclerosis. J Clin Invest 1987; 80:1317–1321
    [Google Scholar]
  25. Visser M. R., Tracy P. B., Vercellotti G. M., Goodman J. L., White J. G., Jacobs H. S. Enhanced thrombin generation and platelet binding on herpes simplex vims-infected endothelium. Proc Natl Acad Sei USA 1988; 85:8227–8230
    [Google Scholar]
  26. Penn A., Garte S. J., Warren L., Nesta D., Mindich B. Transforming gene in human atherosclerotic plaque DNA. Proc Natl Acad Sei USA 1986; 83:7951–7955
    [Google Scholar]
  27. Marrie T. J. Chlamydia pneumoniae. Thorax 1993; 48:1–4
    [Google Scholar]
  28. Saikku P., Mattila K., Nieminen M. S. Serological evidence of an association of a novel chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet 1988; ii:983–985
    [Google Scholar]
  29. Saikku P., Leinonen M., Tenkanen L. Chronic Chlamydia pneumoniae infection as a risk factor for coronary heart disease in the Helsinki Heart Study. Ann Intern Med 1992; 116:273–278
    [Google Scholar]
  30. Thom D. H., Wang S. P., Grayston J. T. Chlamydia pneumoniae strain TWAR antibody and angiographically demonstrated coronary artery disease. Arterioscler Thromb 1991; 11:547–551
    [Google Scholar]
  31. Thom D. H., Grayston J. T., Siscovick D. S., Wang S.-P., Weiss N. S., Daling J. R. Association of prior infection with Chlamydia pneumoniae and angiographically demonstrated coronary artery disease. JAMA 1992; 268:68–72
    [Google Scholar]
  32. Patel P., Mendall M. A., Carrington D. Association of Helicobacter pylori and Chlamydia pneumoniae infections with coronary heart disease and cardiovascular risk factors. BMJ 1995; 311:711–714
    [Google Scholar]
  33. Kuo C.-C., Shor A., Campbell L. A., Fukushi A., Patton D. L., Grayston J. T. Demonstration of Chlamydia pneumoniae in atherosclerotic lesions of coronary arteries. J Infect Dis 1993; 167:841–849
    [Google Scholar]
  34. Wang S.-P., Grayston J. T. Population prevalence of antibody to Chlamydia pneumoniae strain TWAR. In Bowie W. R., Caldwell H. D., Jones R. P. (eds) Chlamydial infections Cambridge: Cambridge University Press; 1990402–405
    [Google Scholar]
  35. Mendall M. A., Goggin P. M., Molineaux N. Relation of Helicobacter pylori infection and coronary heart disease. Br Heart J 1994; 71:437–439
    [Google Scholar]
  36. Cunningham A., Ward M., Matthews R., Ellis R. Helicobacter pylori and Chlamydia pneumoniae in tissues of myocardial infarction cases. 1st European Congress of Chemotherapy, Glasgow 1996 Abstract W149
    [Google Scholar]
  37. Alvarez C., Ramos A. Lipids, lipoproteins, and apoproteins in serum during infection. Clin Chem 1986; 32:142–145
    [Google Scholar]
  38. Lopes-Virella M. E. Interactions between bacterial lipopolysaccharides and serum lipoproteins and their possible role in coronary heart disease. Eur Heart J 1994; 14: Suppl K118–124
    [Google Scholar]
  39. Nieminen M. S., Mattila K., Valtonen V. Infection and inflammation as risk factors for myocardial infarction. Eur Heart J 1993; 14: Suppl K12–16
    [Google Scholar]
  40. Reines H. D., Halushka P. Y., Cook J. A., Wise W. C., Rambo W. Plasma thromboxane concentrations are raised in patients dying with septic shock. Lancet 1982; 2:174–175
    [Google Scholar]
  41. Patel P., Carrington D., Strachan D. P. Fibrinogen: a link between chronic infection and coronary heart disease. Lancet 1994; 343:1634–1635
    [Google Scholar]
  42. Yamell J. W. G., Baker I. A., Sweetman P. M. Fibrinogen, viscosity, and white blood cell count are major risk factors for ischemic heart disease. The Caerphilly and Speedwell collaborative heart disease studies. Circulation 1991; 83:836–844
    [Google Scholar]
  43. Liuzzo G., Biasucci L. M., Gallimore J. R. The prognostic value of C-reactive protein and serum amyloid A protein in severe unstable angina. N Engl J Med 1994; 331:417–424
    [Google Scholar]
  44. Mendall M. A., Patel P., Ballam L., Strachan D., Northfield T. C. C reactive protein and its relation to cardiovascular risk factors: a population based cross sectional study. BMJ 1996; 312:1061–1065
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-46-7-535
Loading

Most cited Most Cited RSS feed