@article{mbs:/content/journal/jmm/10.1099/00222615-46-6-479, author = "König, W. and Prevost, G. and König, W.", title = "Composition of Staphylococcal Bi-Component Toxins Determines Pathophysiological Reactions", journal= "Journal of Medical Microbiology", year = "1997", volume = "46", number = "6", pages = "479-485", doi = "https://doi.org/10.1099/00222615-46-6-479", url = "https://www.microbiologyresearch.org/content/journal/jmm/10.1099/00222615-46-6-479", publisher = "Microbiology Society", issn = "1473-5644", type = "Journal Article", abstract = " Staphylococcus aureus produces numerous bi-component toxins, e.g., Panton-Valentine leukocidin (Luk-PVL) and γ-haemolysin, which consist of type S and F proteins. Previous studies showed that Luk-PVL induces inflammatory mediator release from human granulocytes that might reflect the in-vivo effects, e.g., dermonecrosis by Luk-PVL. Clinical isolates not only harbour the two genes coding for Luk-PVL (S-protein: LukS-PVL, F-protein: LukF-PVL) but also the three genes encoding γ-haemolysin (S-protein: HlgA, HlgB; F-protein: HlgC). The interaction of all the possible potential toxins with human granulocytes was studied with regard to the generation of oxygen metabolites (chemiluminescence response), enzyme activity (β-glucuronidase) and histamine release as well as interleukin (IL)-8 generation. The data clearly show that the individual subunits (S, F) differ in their activities. The following activities were obtained for the S components: LukS-PVL > HlgC > HlgA: the F components LukF-PVL and HlgB were similarly active. Thus, the toxins LukS-PVL/LukF-PVL and LukS-PVL/HlgB were the most potent inducers of inflammatory mediator release from human granulocytes, followed by HlgC/LukF-PVL and HlgC/HlgB and to a lesser degree by the toxins HlgA/LukF-PVL and HlgA/HlgB. The data indicate that class S components and class F components are interchangeable and give toxins with genuine biological activities.", }