Antibiotic Resistance Free

Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-46-6-436
1997-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/46/6/medmicro-46-6-436.html?itemId=/content/journal/jmm/10.1099/00222615-46-6-436&mimeType=html&fmt=ahah

References

  1. Kolmer J. A. Septicaemia. Ann Int Med 1934; 8:612–631
    [Google Scholar]
  2. McGowan J. E., Bames M. W., Finland M. Bacteremia at Boston City Hospital: occurrence and mortality during 12 selected years (1935-1972), with special reference to hospital-acquired cases. J Infect Dis 1975; 132:316–335
    [Google Scholar]
  3. McGowan J. E. Changing etiology of nosocomial bacteremia and fungemia and other hospital-acquired infections. Rev Infect Dis 1985; 7: Suppl 3S357–S370
    [Google Scholar]
  4. Mylotte J. M., White D., McDermott C., Hodan C. Nosocomial bloodstream infection at a veterans hospital; 1979 to 1987. Infect Control Hosp Epidemiol 1989; 10:455–464
    [Google Scholar]
  5. Murray B. E. New aspects of antimicrobial resistance and the resulting therapeutic dilemmas. J Infect Dis 1991; 163:1184–1194
    [Google Scholar]
  6. Bergogne-Berezin E., Joly-Guillou M. L. Hospital infection with Acinetobacter spp.: an increasing problem. J Hosp Infect 1991; 18: Suppl B250–255
    [Google Scholar]
  7. Sirot D. Extended-spectrum plasmid-mediated β -lactamases. J Antimicrob Chemother 1995; 36: Suppl A19–34
    [Google Scholar]
  8. Hibbert-Rogers L. C. F., Heritage J., Gascoyne-Binzi D. M. Molecular epidemiology of ceftazidime resistant Enterobac-teriaceae from patients on a paediatric oncology ward. J Antimicrob Chemother 1995; 36:65–82
    [Google Scholar]
  9. Shannon K. P., Phillips I. A computer program for the storage and analysis of minimum inhibitory concentrations of antimicrobial agents. Binary 1990; 2:89–95
    [Google Scholar]
  10. Gransden W. R., Eykyn S. J., Phillips I. The computerized documentation of septicaemia. J Antimicrob Chemother 1990; 25: Suppl C31–39
    [Google Scholar]
  11. Spencer R. C. Nosocomial infection in the intensive care unit: a question of surveillance. Intensive Care World 1993; 10:173–176
    [Google Scholar]
  12. Koontz F. P. Microbial resistance surveillance techniques. Blood cultures versus multiple body site monitoring. Diagn Microbiol Infect Dis 1992; 15: Suppl 231S–35S
    [Google Scholar]
  13. Walder M., Karlsson E., Nilsson B. Sensitivity of 880 blood culture isolates to 24 antibiotics. Scand J Infect Dis 1994; 26:67–75
    [Google Scholar]
  14. Moller J. K. Antimicrobial usage and microbial resistance in a university hospital during a seven-year period. J Antimicrob Chemother 1989; 24:983–992
    [Google Scholar]
  15. Emmerson A. M., Enstone J. E., Griffin M., Kelsey M. C., Smyth E. T. M. The Second National Prevalence Survey of infection in hospitals - overview of the results. J Hosp Infect 1996; 32:175–190
    [Google Scholar]
  16. Geerdes H. F., Ziegler D., Lode H. Septicemia in 980 patients at a university hospital in Berlin: prospective studies during 4 selected years between 1979 and 1989. Clin Infect Dis 1992; 15:991–1002
    [Google Scholar]
  17. Eykyn S. J., Gransden W. R., Phillips I. The causative organisms of septicaemia and their epidemiology. J Antimicrob Chemother 1990; 25: Suppl C41–58
    [Google Scholar]
  18. Johnson A. P., Speller D. C. E., George R. C., Warner M., Domingue G., Efstratiou A. Prevalence of antibiotic resistance and serotypes in pneumococci in England and Wales: results of observational surveys in 1990 and 1995. BMJ 1996; 312:1454–1456
    [Google Scholar]
  19. Fomsgaard A., Hoiby N., Friis H. M. Prevalence and antibiotic sensitivity to Danish versus other European bacterial isolates from intensive care and hematology/ oncology units. Eur J Clin Microbiol Infect Dis 1995; 14:275–281
    [Google Scholar]
  20. Fass R. J., Bamishan J., Ayers L. W. Emergence of bacterial resistance to imipenem and ciprofloxacin in a university hospital. J Antimicrob Chemother 1995; 36:343–353
    [Google Scholar]
  21. Cometta A., Calandra T., Bille J., Glauser M. P. Escherichia coli resistant to fluoroquinolones in patients with cancer neutropenia. N Engl J Med 1994; 300:1240–1241
    [Google Scholar]
  22. Carratala J., Fernandez-Sevilla A., Tubau F., Callis M., Gudiol F. Emergence of quinolone-resistant Escherichia coli bacteremia in neutropenic patients with cancer who have received prophylactic norfloxacin. Clin Infect Dis 1995; 20:557–560
    [Google Scholar]
  23. Kunova A., Trupl J., Krcmery V. Low incidence of quinolone resistance in gram-negative bacteria after five-years use of ofloxacin in prophylaxis during afebrile neutropenia. J Hosp Infect 1996; 32:155–156
    [Google Scholar]
  24. Liu P. Y. F., Gur D., Hall L. M. C., Livermore D. M. Survey of the prevalence of β -lactamases amongst 1000 Gram-negative bacilli isolated consecutively at the Royal London Hospital. J Antimicrob Chemother 1992; 30:429–447
    [Google Scholar]
  25. Mayer K. H. The epidemiology of antibiotic resistance in hospitals. J Antimicrob Chemother 1986; 18: Suppl C223–233
    [Google Scholar]
  26. Bergogne-Berezin E., Deere D., Joly-Guillou M.-L. Opportunistic nosocomial multiply resistant bacterial infections - their treatment and prevention. J Antimicrob Chemother 1993; 32: Suppl A39–47
    [Google Scholar]
  27. Neu H. C. The crisis of antibiotic resistance. Science 1992; 257:1064–1073
    [Google Scholar]
  28. Tenover F. C., McGowan J. E. Reasons for the emergence of antibiotic resistance. Am J Med Sci 1996; 311:9–16
    [Google Scholar]
  29. Scaife W., Young H.-K., Paton R. H., Amyes S. G. B. Transferable imipenem-resistance in Acinetobacter species from a clinical source. J Antimicrob Chemother 1995; 36:585–586
    [Google Scholar]
  30. O’Brien T. F. International Survey of Antibiotic Resistance Group. Resistance to antibiotics at medical centres in different parts of the world. J Antimicrob Chemother 1986; 18: Suppl C243–253
    [Google Scholar]
  31. Cookson B. D. Progress with establishing and implementing standards for infection control in the UK. J Hosp Infect 1995; 30: Suppl 69–75
    [Google Scholar]
  32. WHO Scientific Working Group on monitoring and management of bacterial resistance to antimicrobial agents World Health Organization, Geneva; 1994
  33. Department of Health and PHLS Working Group The prevention and management of Clostridium difficile infection. Heywood, BAPS Health Publications Unit; 1994
  34. Report of the Public Health Laboratory Service Incidence of surgical wound infection in England and Wales. Lancet 1960; 2:659–663
    [Google Scholar]
  35. Sartor C., Edwards J. R., Gaynes R. P., Culver D. H. National Nosocomial Infections Surveillance System. Evolution of hospital participation in the National Nosocomial Infections Surveillance System 1986 to 1993. Am J Infect Control 1995; 23:364–368
    [Google Scholar]
  36. Wegelt J. A., Dryer D., Haley R. W. The necessity and efficiency of wound surveillance after discharge. Arch Surg 1992; 127:77–82
    [Google Scholar]
  37. Rahman A., Mackenzie D., Marples R., Cookson B. D. Identification of MRSA incidents in hospitals. J Hosp Infect 1995; 30:76–78
    [Google Scholar]
  38. National Nosocomial Infections Surveillance (NNIS) System Nosocomial infection rates for interhospital comparison: limitations and possible solution. Infect Control Hosp Epidemiol 1991; 12:609–621
    [Google Scholar]
  39. Schaberg D. R., Culver D. H., Gaynes R. P. Major trends in the microbial etiology of nosocomial infection. Am J Med 1991; 91:72S–75S
    [Google Scholar]
  40. Panlilio A. L., Culver D. H., Gaynes R. P. Methicillin-resistant Staphylococcus aureus in US hospitals, 1975-1991. Infect Control Hosp Epidemiol 1992; 13:582–586
    [Google Scholar]
  41. Meers P. D., Ayliffe G. A. J., Emmerson A. M. Report on the National Survey of Infection in Hospitals 1980. J Hosp Infect 1981; 2: Suppl 1–51
    [Google Scholar]
  42. Olson M. M., Lee J. T. Continuous 10-year wound infection surveillance. Results, advantages, and unanswered questions. Arch Surg 1990; 125:794–803
    [Google Scholar]
  43. Marples R. R., Reith S. Methicillin-resistant Staphylococcus aureus in England and Wales. CDR Review 1992; 2:R25–29
    [Google Scholar]
  44. Report of a Combined Working Party of the Hospital Infection Society and the British Society of Antimicrobial Chemotherapy Revised guidelines for the control of epidemic methicillin-resistant Staphylococcus aureus. J Hosp Infect 1990; 16:351–377
    [Google Scholar]
  45. Cox R. A., Mallaghan C., Conquest C., King J. Epidemic methicillin-resistant Staphylococcus aureus: controlling the spread outside hospital. J Hosp Infect 1995; 29:107–119
    [Google Scholar]
  46. Cox R. A., Conquest C., Mallaghan C., Marples R. R. A major outbreak of methicillin-resistant Staphylococcus aureus caused by a new phage-type (EMRSA-16). J Hosp Infect 1995; 29:87–106
    [Google Scholar]
  47. Cookson B. D., Peters B., Webster M., Phillips I., Rahman N., Noble W. Staff carriage of epidemic methicillin-resistant Staphylococcus aureus. J Clin Microbiol 1989; 27:1471–1476
    [Google Scholar]
  48. Marples R. R., Speller D. C. E., Cookson B. D. Prevalence of mupirocin resistance in Staphylococcus aureus. J Hosp Infect 1995; 29:153–155
    [Google Scholar]
  49. Spera R. Y., Farber B. F. Multiply-resistant Enterococcus faecium. The nosocomial pathogen of the 1990s. JAMA 1992; 268:2563–2564
    [Google Scholar]
  50. Anon Nosocomial enterococci resistant to vancomycin - United States 1989-1993. MMWR Morbid Mortal Wkly Rep 1993; 42:597–599
    [Google Scholar]
  51. Uttley A. H., George R. C., Naidoo J. High-level vancomycin-resistant enterococci causing hospital infections. Epidemiol Infect 1989; 103:173–181
    [Google Scholar]
  52. Wade J. J. The emergence of Enterococcus faecium resistant to glycopeptides and other standard agents - a preliminary report. J Hosp Infect 1995; 30: Suppl 483–493
    [Google Scholar]
  53. Wade J. J., Desai N., Casewell M. W. Hygienic hand disinfection for the removal of epidemic vancomycin-resistant Enterococcus faecium and gentamicin-resistant Enterobacter cloacae. J Hosp Infect 1991; 18:211–218
    [Google Scholar]
  54. Anon Vancomycin resistant enterococci in hospitals in the United Kingdom. Commun Dis Rep CDR Weekly 1995; 5:281–284
    [Google Scholar]
  55. Murray B. E. The life and times of the Enterococcus. Clin Microbiol Rev 1990; 3:46–65
    [Google Scholar]
  56. Gautom R. K., Stewart B., Coyle M. B., Plorde J. J., Schoenknecht F. D., Fritsche T. R. Pulsed field gel electrophoretic analysis of vancomycin resistant enterococci (VREs) recovered from Seattle hospitals (Abstract). Am J Clin Pathol 1995; 104:223
    [Google Scholar]
  57. Hospital Infection Control Practices Advisory Committee (HICPAC) Recommendations for preventing the spread of vancomycin resistance. Infect Control Hosp Epidemiol 1995; 16:105–113
    [Google Scholar]
  58. Rice L. B. The theoretical origin of vancomycin-resistant enterococci. Clin Microbiol Newslett 1996; 17:24189–192
    [Google Scholar]
  59. Klare I., Heier H., Claus H., Reissbrodt R., Witte W. vanA- mediated level glycopeptide resistance in Enterococcus faecium from animal husbandry. FEMS Microbiol Lett 1995; 125:165–171
    [Google Scholar]
  60. Brown S., Amyes S. G. B., Thomson C. J. Antibiotic resistance in Haemophilus influenzae isolated in England and Wales. 1st European Congress of Chemotherapy. Camforth, Lancs, Parthenon Publishing; 1996 Abstract T135
  61. Scriver S. R., Walmsley S. L., Kau C. L. Determination of antimicrobial susceptibilities of Canadian isolates of Haemophilus influenzae and characterization of their /J-lactamases. Antimicrob Agents Chemother 1994; 38:1678–1680
    [Google Scholar]
  62. Shanahan P. M. A., Thomson C. J., Amyes S. G. B. Antibiotic susceptibilities of Haemophilus influenzae in central Scotland. Clin Microbiol Infect 1:168–174
    [Google Scholar]
  63. Reid A. J., Simpson I. N., Harper P. B., Amyes S. G. B. Ampicillin resistance in Haemophilus influenzae: identification of resistance mechanisms. J Antimicrob Chemother 1987; 20:645–656
    [Google Scholar]
  64. Vali L., Lindsay G., Thomson C. J., Amyes S. G. B. β -lactamases in Haemophilus influenzae isolated in Glasgow. 94th Annual Meeting of the ASM Washington, DC: American Society for Microbiology; 1994 Abstract A-72
    [Google Scholar]
  65. Daum R. S., Murphey-Corb M., Shapira S., Dipp S. Epidemiology of ROB β -lactamase among ampicillin-resistant Haemophilus influenzae isolates in the United States. J Infect Dis 1988; 157:450–455
    [Google Scholar]
  66. Bush K., Jacoby G. A., Medeiros A. A. A functional classification scheme for β -lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995; 39:1211–1233
    [Google Scholar]
  67. Vali L., Thomson C. J., Amyes S. G. B. Incidence of β -lactam resistance in Haemophilus influenzae. 95th Annual Meeting of the ASM Washington, DC: American Society for Microbiology; 1995 Abstract A-81
    [Google Scholar]
  68. Vali L., Thomson C. J., Amyes S. G. B. Haemophilus influenzae: identification of a novel /3-lactamase. J Pharm Pharmacol 1994; 46: Suppl 21041
    [Google Scholar]
  69. Retsema J., Girard A., Schelkly W. Spectrum and mode of action of azithromycin (CP-62, 993), a new 15-memberedring macrolide with improved potency against gram-negative organisms. Antimicrob Agents Chemother 1987; 31:1939–1947
    [Google Scholar]
  70. Roberts M., Comey A., Shaw W. V. Molecular characterization of three chloramphenicol acetyltransferases isolated from Haemophilus influenzae. J Bacteriol 1982; 151:737–741
    [Google Scholar]
  71. Bums J. L., Mendelman P. M., Levy J., Stull T. L., Smith A. L. A permeability barrier as a mechanism of chloramphenicol resistance in Haemophilus influenzae. Antimicrob Agents Chemother 1985; 27:46–54
    [Google Scholar]
  72. Speer B. S., Shoemaker N. B., Salyers A. A. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clin Microbiol Rev 1992; 5:387–399
    [Google Scholar]
  73. Jahn G., Laufs R., Kaulfers P.-M., Kolenda H. Molecular nature of two Haemophilus influenzae R factors containing resistances and the multiple integration of drug resistance transposons. J Bacteriol 1979; 138:584–597
    [Google Scholar]
  74. de Groot R., Chaffin D. O., Kuehn M., Smith A. L. Trimethoprim resistance in Haemophilus influenzae is due to altered dihydrofolate reductases(s). Biochem J 1991; 274:657–662
    [Google Scholar]
  75. Gould I. M., Forbes K. J., Gordon G. S. Quinolone resistant Haemophilus influenzae. J Antimicrob Chemother 1994; 33:187–188
    [Google Scholar]
  76. Steingrube V. A., Wallace R. J., Beaulieu D. A membrane-bound precursor β -lactamase in strains of Moraxella catarrhalis and Moraxella nonliquefaciens that produce periplasmic BRO-1 and BRO-2 β -lactamases. J Antimicrob Chemother 1993; 31:237–244
    [Google Scholar]
  77. Simpson I. N., Plested S. J. The origin and properties of β - lactamase satellite bands seen in isoelectric focusing. J Antimicrob Chemother 1983; 12:127–131
    [Google Scholar]
  78. Christensen J. J., Keiding J., Schumacher H., Bruun B. Recognition of a new Branhamella catarrhalis β -lactamase-BRO-3. J Antimicrob Chemother 1991; 28:774–775
    [Google Scholar]
  79. Wallace R. J., Steingrube V. A., Nash D. R. BRO β -lactamase of Branhamella catarrhalis and Moraxella subgenus Moraxella, including evidence for chromosomal β -lactamase transfer by conjugation in B. catarrhalis M. nonliquefaciens and M. lacunata. Antimicrob Agents Chemother 1989; 33:1845–1854
    [Google Scholar]
  80. Linares J., Pallares R., Alonso T. Trends in antimicrobial resistance of clinical isolates of Streptococcus pneumoniae in Bellvitge hospital, Barcelona, Spain (1979-1990). Clin Infect Dis 1992; 15:99–105
    [Google Scholar]
  81. Marton A. Pneumococcal antimicrobial resistance: the problem in Hungary. Clin Infect Dis 1992; 15:106–111
    [Google Scholar]
  82. Koomhof H. J., Wasas A., Klugman K. Antimicrobial resistance in Streptococcus pneumoniae′, a South African perspective. Clin Infect Dis 1992; 15:84–94
    [Google Scholar]
  83. Reichmann P., Varon E., Gunther E. Penicillin-resistant Streptococcus pneumoniae in Germany: genetic relationship to clones from other European countries. J Med Microbiol 1995; 43:377–385
    [Google Scholar]
  84. Appelbaum P. C. Antimicrobial resistance in Streptococcus pneumoniae′, an overview. Clin Infect Dis 1992; 15:77–83
    [Google Scholar]
  85. Spratt B. G. Resistance to antibiotics mediated by target alterations. Science 1994; 264:388–393
    [Google Scholar]
  86. Schutze G. E., Kaplan S. L., Jacobs R. F. Resistant pneumococcus: a worldwide problem. Infection 1994; 22:233–237
    [Google Scholar]
  87. Shaw W. V. Chloramphenicol acetyltransferase: enzymology and molecular biology. CRC Crit Rev Biochem 1983; 14:1–46
    [Google Scholar]
  88. Burdett V. Purification and characterization of Tet(M), a problem that renders ribosomes resistant to tetracycline. J Biol Chem 1991; 266:2872–2877
    [Google Scholar]
  89. Weisblum B. Inducible resistance to macrolides, lincosamides and streptogramin type B antibiotics: the resistance phenotype, its biological diversity, and structural elements that regulate expression - a review. J Antimicrob Chemother 1985; 16: Suppl A63–90
    [Google Scholar]
  90. George R. C., Ball L. C., Cooper P. G. Antibiotic resistant pneumococci in the United Kingdom. CDR Rev 1992; 2:R37–R43
    [Google Scholar]
  91. George R. C., Norbury P. B., James D. Surveillance of antibiotic resistance in England and Wales. J Med Microbiol 1992; 36:17–20
    [Google Scholar]
  92. Aszkenasy O. M., George R. C., Begg N. T. Pneumococcal bacteraemia and meningitis in England and Wales 1982 to 1992. Commun Dis Rep CDR Rev 1995; 5:R45–R50
    [Google Scholar]
  93. Anon Antimicrobial resistance of pneumococci isolated from blood and cerebrospinal fluid, 1993 and 1994. Commun Dis Rep CDR Weekly 1995; 5:187–188
    [Google Scholar]
  94. Wenzel R. P., Nettleman M. D., Jones R. N., Pfaller M. A. Methicillin-resistant Staphylococcus aureus: implications for the 1990s and effective control measures. Am J Med 1991; 91: Suppl B221S–227S
    [Google Scholar]
  95. Marples R. R., Reith S. Methicillin-resistant Staphylococcus aureus in England and Wales. Commun Dis Rep CDR Rev 1992; 2:R25–29
    [Google Scholar]
  96. Anon Epidemic methicillin-resistant Staphylococcus aureus. Commun Dis Rep CDR Rev 1996; 6:197
    [Google Scholar]
  97. Friedland I. R. Treatment of pneumococcal infections in the era of increasing penicillin resistance. Curr Opin Infect Dis 1995; 8:213–217
    [Google Scholar]
  98. French G. L., Cheng A. F. B., Ling J. M. L., Mo P., Donnan S. Hong Kong strains of methicillin-resistant and methicillin-sensitive Staphylococcus aureus have similar virulence. J Hosp Infect 1990; 15:117–125
    [Google Scholar]
  99. Vincent J. L., Bihari P. J., Suter P. M. The prevalence of nosocomial infection in intensive care units in Europe - results of the European prevalence of infection in intensive-care (EPIC) study. EPIC International Advisory Committee JAMA 1995; 274:639–644
    [Google Scholar]
  100. Emori T. G., Gaynes R. P. An overview of nosocomial infections, including the role of the microbiology laboratory. Clin Microbiol Rev 1993; 6:428–442
    [Google Scholar]
  101. Maki D. G., Agger W. A. Enterococcal bacteremia: clinical features, the risk of endocarditis and management. Medicine 1988; 67:248–269
    [Google Scholar]
  102. Handwerger S., Raucher B., Altarac D. Nosocomial outbreak due to Enterococcus faecium highly resistant to vancomycin, penicillin and gentamicin. Clin Infect Dis 1993; 16:750–755
    [Google Scholar]
  103. Cotterill S., Evans R., Fraise A. P. An unusual source for an outbreak of methicillin-resistant Staphylococcus aureus on an intensive therapy unit. J Hosp Infect 1996; 32:207–216
    [Google Scholar]
  104. Jacobson K. L., Cohen S. H., Inciardi J. F. The relationship between antecedent antibiotic use and resistance to extended-spectrum cephalosporins in Group I β -lactamase-producing organisms. Clin Infect Dis 1995; 21:1107–1113
    [Google Scholar]
  105. Ballow C. H., Schentag J. J. Trends in antibiotic utilization and bacterial resistance. Report of the National Nosocomial Resistance Surveillance Group. Diagn Microbiol Infect Dis 1992; 15: Suppl 237S–42S
    [Google Scholar]
  106. Bamberger D. M., Dahl S. L. Impact of voluntary vs enforced compliance of third-generation cephalosporin use in a teaching hospital. Arch Intern Med 1992; 152:554–557
    [Google Scholar]
  107. Leclercq R., Derlot E., Duval J., Courvalin P. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med 1988; 319:157–161
    [Google Scholar]
  108. Centers for Disease Control and Prevention Nosocomial enterococci resistant to vancomycin - United States 1989-1993. Morb Mort Weekly Rep 1993; 42:597–599
    [Google Scholar]
  109. Woodford N., Morrison D., Johnson A. P. Plasmid mediated VanB glycopeptide resistance in enterococci. Microb Drug Res 1995; 1:235–240
    [Google Scholar]
  110. Edmond M. B., Ober J. F., Weinbaum D. L. Vancomycin-resistant Enterococcus faecium bacteremia: risk factors for infection. Clin Infect Dis 1995; 20:1126–1133
    [Google Scholar]
  111. Hastings J. G. M., Jolley A. J. Vancomycin resistant and dependent enterococci in a tertiary referral centre. 35th ICAAC San Francisco. Washington, DC: American Society for Microbiology; 1995 Abstract
    [Google Scholar]
  112. Woodford N., Morrison D., Johnson A. P., Briant V., George R. C., Cookson B. Application of DNA probes for rRNA and Van A genes to investigation of a nosocomial cluster of vancomycin-resistant enterococci. J Clin Microbiol 1993; 31:653–658
    [Google Scholar]
  113. Sader H. S., Pfaller M. A., Tenover F. C., Hollis R. J., Jones R. N. Evaluation and characterization of multiresistant Enterococcus faecium from 12 US Medical Centers. J Clin Microbiol 1994; 32:2840–2842
    [Google Scholar]
  114. Bates J., Jordens J. Z., Griffiths D. T. Farm animals as a putative reservoir for vancomycin-resistant enterococci infection in man. J Antimicrob Chemother 1994; 34:507–516
    [Google Scholar]
  115. Centers for Disease Control and Prevention United States: Federal Register. Preventing the spread of vancomycin resistance 1994; 59:257–263
    [Google Scholar]
  116. Arthur M., Molinas C., Depardieu F., Courvalin P. Characterization of Tn 1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol 1993; 175:117–127
    [Google Scholar]
  117. Arthur M., Courvalin P. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob Agents Chemother 1993; 37:1563–1571
    [Google Scholar]
  118. Messer J., Reynolds P. E. Modified peptidoglycan precursors produced by glycopeptide-resistant enterococci. FEMS Microbiol Lett 1992; 73:95–200
    [Google Scholar]
  119. Quintiliani R., Evers S., Courvalin P. The vanB gene confers various levels of self-transferable resistance to vancomycin in enterococci. J Infect Dis 1993; 167:1220–1223
    [Google Scholar]
  120. Evers S., Reynolds P. E., Courvalin P. Sequence of the vanB and ddl genes encoding D-alanine: D-lactate and D-alanine ligases in vancomycin-resistant Enterococcus faecalis V583. Gene 1994; 140:97–102
    [Google Scholar]
  121. Quintiliani R., Courvalin P. Conjugal transfer of the vancomycin resistance determinant vanB between enterococci involves the movement of large genetic elements from chromosome to chromosome. FEMS Microbiol Lett 1994; 119:359–363
    [Google Scholar]
  122. Billot-Klein D., Gutmann L., Sable S., Guittet E., van Heijenoort J. Modification of peptidoglycan precursors is a common feature of the low-level vancomycin-resistant vanB type Enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides, and Enterococcus gallinarum. J Bacteriol 1994; 176:2398–2405
    [Google Scholar]
  123. Woodford N., Johnson A. P., Morrison D. Vancomycin-dependent enterococci in the United Kingdom. J Antimicrob Chemother 1994; 33:10–66
    [Google Scholar]
  124. Fraimow H. S., Jungkind D. L., Lander D. W., Delso D. R., Dean J. L. Urinary tract infection with an Enterococcus faecalis isolate that requires vancomycin for growth. Ann Intern Med 1994; 121:22–26
    [Google Scholar]
  125. Biavasco F., Giovanetti E., Montanari M. R., Lupidi R., Varaldo P. E. Development of in-vitro resistance to glycopeptide antibiotics: assessment of staphylococci of different species. J Antimicrob Chemother 1991; 27:71–79
    [Google Scholar]
  126. Daum R. S., Gupta S., Sabbagh R., Milewski W. M. Characterization of Staphylococcus aureus isolates with decreased susceptibility to vancomycin and teicoplanin: isolation and purification of a constitutively produced protein associated with decreased susceptibility. J Infect Dis 1992; 166:1066–1072
    [Google Scholar]
  127. Sanyal D., Greenwood D. An electronmicroscope study of glycopeptide antibiotic-resistant strains of Staphylococcus epidermidis. J Med Microbiol 1993; 39:204–210
    [Google Scholar]
  128. O’Hare M. D., Reynolds P. E. Novel membrane proteins present in teicoplanin-resistant, vancomycin-sensitive, coagulase-negative Staphylococcus spp. J Antimicrob Chemother 1992; 30:753–768
    [Google Scholar]
  129. Kaatz G. W., Seo S. M., Dorman N. J., Lemer S. A. Emergence of teicoplanin resistance during therapy of Staphylococcus aureus endocarditis. J Infect Dis 1990; 162:103–108
    [Google Scholar]
  130. Noble W. C., Virani Z., Cree R. G. A. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol Lett 1992; 72:195–198
    [Google Scholar]
  131. Abraham E. P., Chain E. An enzyme from bacteria able to destroy penicillin. Nature 1940; 146:837
    [Google Scholar]
  132. Williams R. J., Yang Y.-J., Livermore D. M. Mechanisms by which imipenem may overcome resistance in Gram-negative bacilli. J Antimicrob Chemother 1986; 18: Suppl E9–13
    [Google Scholar]
  133. Gehrlein M., Leying H., Cullman W., Wendt S., Opferkuch W. Imipenem resistance in Acinetobacter baumanii is due to altered penicillin-binding proteins. Chemotherapy 1991; 37:405–412
    [Google Scholar]
  134. Bergogne-Berezin E., Joly-Guillou M. L. Antibiotic resistance mechanisms in Acinetobacter. In Towner K. J., Bergogne-Berezin E., Fewson C. A. (eds) The biology of Acinetobacter. taxonomy, clinical importance, molecular biology, physiology, industrial relevance New York: Plenum Press; 199183–115
    [Google Scholar]
  135. Neuwirth C., Siebor E., Duez J.-M., Pechinot A., Kazmierczak A. Imipenem resistance in clinical isolates of Proteus mirabilis associated with alterations in penicillin-binding proteins. J Antimicrob Chemother 1995; 36:335–342
    [Google Scholar]
  136. Nordmann P., Nicolas M. H., Gutmann L. Penicillin-binding proteins of Rhodococcus equipotential role in resistance to imipenem. Antimicrob Agents Chemother 1993; 37:1406–1409
    [Google Scholar]
  137. Pederson S. S., Pressler T., Hoiby N., Bentzon M. W., Cock C. Imipenemcilastin treatment of multiresistant Pseudomonas aeruginosa lung infections in cystic fibrosis. J Antimicrob Chemother 1985; 16:629–635
    [Google Scholar]
  138. Buscher K. H., Cullman W., Dick W., Opferkuch W. Imipenem resistance in Pseudomonas aeruginosa resulting from diminished expression of an outer membrane protein. Antimicrob Agents Chemother 1987; 31:703–708
    [Google Scholar]
  139. Trias J., Nikaido H. Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides. J Biol Chem 1990; 265:15680–15684
    [Google Scholar]
  140. Livermore D. M. Interplay of impermeability and chromosomal β-lactamase activity in imipenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 1992; 36:2046–2048
    [Google Scholar]
  141. Zhou X. Y., Kitzis M., Gutman L. Role of cephalosporinase in carbapenem resistance of clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1993; 37:387–389
    [Google Scholar]
  142. Chen H. Y., Yuan M., Livermore D. M. Mechanisms of resistance to β -lactam antibiotics amongst Pseudomonas aeruginosa isolates collected in the UK in 1993. J Med Microbiol 1995; 43:300–309
    [Google Scholar]
  143. Rasmussen B. A., Yang Y., Jacobus N., Bush K. Contribution of enzymatic properties, cell permeability, and enzyme expression to microbiological activities of β -lactams in three Bacteroides fragilis isolates that harbor a metallo-β -lactamase gene. Antimicrob Agents Chemother 1994; 38:2116–2120
    [Google Scholar]
  144. Edwards R., Greenwood D. An investigation of β -lactamases from clinical isolates of Bacteroides species. J Med Microbiol 1992; 36:89–95
    [Google Scholar]
  145. Livermore D. M. β -lactamases in laboratory and clinical resistance. Clin Microbiol Rev 1995; 8:557–584
    [Google Scholar]
  146. Bush K., Jacoby G. A., Medeiros A. A. A functional classification scheme for β -lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995; 39:1211–1233
    [Google Scholar]
  147. Yang Y., Wu P., Livermore D. M. Biochemical characterization of a β -lactamase that hydrolyzes penems and carbapenems from two Serratia marcescens isolates. Antimicrob Agents Chemother 1990; 34:755–758
    [Google Scholar]
  148. Naas T., Vandel L., Soughakoff W., Livermore D. M., Nordmann P. Cloning and sequence analysis of the gene for a carbapenem-hydrolyzing Class A β -lactamase, Sme-1, from Serratia marcescens S6. Antimicrob Agents Chemother 1994; 38:1262–1270
    [Google Scholar]
  149. Naas T., Nordmann P. Analysis of a carbapenem-hydrolyzing class A β-lactamase from Enterobacter cloacae and of its LysR-type regulatory protein. Proc Natl Acad Sci USA 1994; 91:7693–7697
    [Google Scholar]
  150. Payne D. J. Metallo-β-lactamases - a new therapeutic challenge. J Med Microbiol 1993; 39:93–99
    [Google Scholar]
  151. Sutton B. J., Artymiuk P. J., Cordero-Borboa A. E., Little C., Phillips D. C., Waley S. G. An X-ray crystallographic study of the β -lactamase II from Bacillus cereus at 0.35 nm resolution. Biochem J 1987; 248:181–188
    [Google Scholar]
  152. Hawkey P. M., Birkenhead D., Kerr K. G., Newton K. E., Hyde W. A. Effect of divalent cations in bacteriological media on the susceptibility of Xanthomonas maltophilia to imipenem, with special reference to zinc ions. J Antimicrob Chemother 1993; 31:47–55
    [Google Scholar]
  153. Fuji T., Sato K., Miyata K., Inoue M., Mitsuhashi S. Biochemical properties of /3-lactamase produced by Legionella gormanii. Antimicrob Agents Chemother 1986; 29:925–926
    [Google Scholar]
  154. Shannon K., King A., Phillips I. β -Lactamases with high activity against imipenem and Sch 34343 from Aeromonas hydrophila. J Antimicrob Chemother 1986; 17:45–50
    [Google Scholar]
  155. Bakken J. S., Sanders C. C., Clark R. B., Hori M. β -Lactam resistance in Aeromonas spp. caused by inducible β - lactamases active against penicillins, cephalosporins, and carbapenems. Antimicrob Agents Chemother 1988; 32:1314–1319
    [Google Scholar]
  156. Iaconis J. P., Sanders C. C. Purification and characterization of inducible β -lactamases in Aeromonas spp. Antimicrob Agents Chemother 1990; 34:44–51
    [Google Scholar]
  157. Rossolini G. M., Zanchi A., Chiesurin A., Amicosante G., Satta G., Guglielmetti P. Distribution of cphA or related carbapenemase-encoding genes and production of carbapenemase activity in members of the genus Aeromonas. Antimicrob Agents Chemother 1995; 39:346–349
    [Google Scholar]
  158. Walsh T. R., Payne D. J., MacGowan A. P., Bennett P. M. A clinical isolate of Aeromonas sobria with three chromosomally mediated inducible β -lactamases: a cephalosporinase, a penicillinase and a third enzyme, displaying carbapenemase activity. J Antimicrob Chemother 1995; 35:271–279
    [Google Scholar]
  159. Hayes M. V., Thomson C. J., Amyes S. G. B. Three β -lactamases isolated from Aeromonas salmonicida, including a carbapenemase not detectable by conventional methods. Eur J Clin Microbiol Infect Dis 1994; 13:805–811
    [Google Scholar]
  160. Hayes M. V., Thomson C. J., Amyes S. G. B. The ‘hidden’ carbapenemase of Aeromonas hydrophila. J Antimicrob Chemother 1996; 37:33–44
    [Google Scholar]
  161. Bonfiglio G., Stefani S., Nicoletti G. Clinical isolate of a Xanthomonas maltophilia strain producing L-l-deficient and L-2-inducible β -lactamases. Chemotherapy 1995; 41:121–124
    [Google Scholar]
  162. Paton R., Miles R. S., Amyes S. G. B. Biochemical properties of inducible β -lactamases produced from Xanthomonas maltophilia. Antimicrob Agents Chemother 1994; 38:2143–2149
    [Google Scholar]
  163. Payne D. J., Cramp R., Bateson J. H., Neale J., Knowles D. Rapid identification of metallo- and serine β -lactamases. Antimicrob Agents Chemother 1994; 38:991–996
    [Google Scholar]
  164. Baxter I. A., Lambert P. A. Isolation and partial purification of a carbapenem-hydrolysing metallo-β -lactamase from Pseudomonas cepacia. FEMS Microbiol Lett 1994; 122:251–256
    [Google Scholar]
  165. Yotsuji A., Minami S., Inoue M., Mitsuhashi S. Properties of novel β -lactamase produced by Bacteroides fragilis. Antimicrob Agents Chemother 1983; 24:925–929
    [Google Scholar]
  166. Thompson J. S., Malamy M. H. Sequencing the gene for an imipenem-cefoxitin-hydrolyzing enzyme (CfiA) from Bacteroides fragilis TAL2480 reveals strong similarity between CfiA and Bacillus cereus β -lactamase II. J Bacteriol 1990; 172:2584–2593
    [Google Scholar]
  167. Podglajen I., Breuil J., Collatz E. Insertion of a novel DNA sequence, IS 1186, upstream of the silent carbapenemase gene cfiA, promotes expression of carbapenem resistance in clinical isolates of Bacteroides fragilis. Mol Microbiol 1994; 12:105–114
    [Google Scholar]
  168. Bandoh K., Ueno K., Watanabe K., Kato N. Susceptibility patterns and resistance to imipenem in the Bacteroides fragilis group species in Japan: a 4-year study. Clin Infect Dis 1993; 16: Suppl 4S382–S386
    [Google Scholar]
  169. Watanabe M., Iyobe S., Inoue M., Mitsuhashi S. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1991; 35:147–151
    [Google Scholar]
  170. Osano E., Arakawa Y., Wacharotayankun R. Molecular characterization of an enterobacterial metallo-β -lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother 1994; 38:71–78
    [Google Scholar]
  171. Minami S., Akama M., Araki H. Imipenem and cephem resistant Pseudomonas aeruginosa carrying plasmids coding for class B β -lactamase. J Antimicrob Chemother 1996; 37:433–444
    [Google Scholar]
  172. Ito H., Arakawa Y., Ohsuka S., Wacharotayankun R., Kato N., Ohta M. Plasmid-mediated dissemination of the metallo-β - lactamase gene bla1Mp among clinically isolated strains of Serratia marcescens. Antimicrob Agents Chemother 1995; 39:824–829
    [Google Scholar]
  173. Senda K., Arakawa Y., Ito H. PCR detection of metallo-β -lactamase producing Pseudomonas aeruginosa resistant to carbapenem. 96th Annual Meeting of ASM New Orleans. Washington, DC: American Society for Microbiology; 1996 Abstract A45, p 141
    [Google Scholar]
  174. Senda K., Arakawa Y., Nakashima K. Multifocal outbreaks of metallo-/J-lactamase-producing Pseudomonas aeruginosa resistant to broad-spectrum β -lactams, including carbapenems. Antimicrob Agents Chemother 1996; 40:349–353
    [Google Scholar]
  175. Ambler R. P., Coulson A. F. N., Frere J. M. A standard numbering system for the class A β -lactamases. Biochem J 1991; 276:269–270
    [Google Scholar]
  176. Shanahan P. M. A., Thomson C. J., Amyes S. G. B. β -Lactam resistance in normal faecal flora from South Africa. Epidemiol Infect 1995; 115:243–253
    [Google Scholar]
  177. Nandivada L. S., Amyes S. G. B. Plasmid-mediated β -lactam resistance in pathogenic Gram-negative bacteria isolated in South India. J Antimicrob Chemother 1990; 26:279–290
    [Google Scholar]
  178. Shanahan P. M. A., Thomson C. J., Amyes S. G. B. β -Lactam resistance in aerobic faecal flora from general practice patients in the U. K. Eur J Clin Microbiol Infect Dis 1994; 13:760–763
    [Google Scholar]
  179. Henquell C., Chanal C., Sirot D., Labia R., Sirot J. Molecular characterization of nine different types of mutants among 107 inhibitor-resistant TEM β -lactamases from clinical isolates of Escherichia coli. Antimicrob Agents Chemother 1995; 39:427–430
    [Google Scholar]
  180. Jelsch C., Lenfant F., Masson J. M., Samama J. P. Crystallization and preliminary crystallographic data on Escherichia coli TEM-1 β -lactamase. J Mol Biol 1992; 223:377–380
    [Google Scholar]
  181. Jelsch C., Mourey L., Masson J. M., Samama J. P. Crystal structure of Escherichia coli TEM-1 β -lactamase at 1.8-A resolution. Proteins 1993; 16:364–383
    [Google Scholar]
  182. Payne D. J., Marriott M. S., Amyes S. G. B. Characterisation of a unique ceftazidime-hydrolysing β -lactamase, TEM-E2. J Med Microbiol 1990; 32:131–134
    [Google Scholar]
  183. Du Bois S. K., Marriott M. S., Amyes S. G. B. TEM- and SHV-derived extended-spectrum β -lactamases: relationship between selection, structure and function. J Antimicrob Chemother 1995; 35:7–22
    [Google Scholar]
  184. Payne D. J., Amyes S. G. B. Transferable resistance to extended-spectrum β -lactams: a major threat or a minor inconvenience?. J Antimicrob Chemother 1991; 27:255–261
    [Google Scholar]
  185. Sowek J. A., Singer S. B., Ohringer S. Substitution of lysine at position 104 or 240 of TEM-1 pTZ18R β -lactamase enhances the effect of serine-164 substitution on hydrolysis or affinity for cephalosporins and the monobactam aztreonam. Biochemistry 1991; 30:3179–3188
    [Google Scholar]
  186. Jarlier Y., Nicolas M. H., Fournier G., Philippon A. Extended broad-spectrum β -lactamases conferring transferable resistance to newer β -lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis 1988; 10:867–878
    [Google Scholar]
  187. Knothe H., Shah P., Krcmery V., Antal M., Mitsuhashi S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae. Infection 1983; 11:315–317
    [Google Scholar]
  188. Huletsky A., Couture F., Leversque R. C. Nucleotide sequence and phylogeny of SHV-2 β -lactamase. Antimicrob Agents Chemother 1990; 34:1725–1732
    [Google Scholar]
  189. Huletsky A., Knox J. R., Levesque R. C. Role of Ser-238 and Lys-240 in the hydrolysis of 3rd-generation cephalosporins by SHV-type β -lactamases probed by site-directed mutagenesis and 3-dimensional modeling. J Biol Chem 1993; 268:3690–3697
    [Google Scholar]
  190. Vatopoulos A. C., Philippon A., Tzouvelekis L. S., Komninou Z., Legakis N. J. Prevalence of a transferable SHV-5 type β - lactamase in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Greece. J Antimicrob Chemother 1990; 26:635–648
    [Google Scholar]
  191. Bauemfeind A., Rosenthal E., Eberlein E., Holley M., Schweighart S. Spread of Klebsiella pneumoniae producing SHV-5 β -lactamase among hospitalized patients. Infection 1993; 21:18–22
    [Google Scholar]
  192. Bradford P. A., Urban C., Jaiswal A. SHV-7, a novel cefotaxime-hydrolyzing β -lactamase, identified in Escherichia coli isolates from hospitalized nursing home patients. Antimicrob Agents Chemother 1995; 39:899–905
    [Google Scholar]
  193. Du Bois S. K., Marriott M. S., Amyes S. G. B. Can clavulanic acid reverse extended-spectrum β -lactamase mutations?. ICAAC, New Orleans Washington, DC: American Society for Microbiology; 1993 582 (Abstract)
    [Google Scholar]
  194. Podbielski A., Schonling J., Melzer B., Wamatz K., Leusch H. G. Molecular characterization of a new plasmid-encoded SHV-type β -lactamase (SHV-2 variant) conferring high-level cefotaxime resistance upon Klebsiella pneumoniae. J Gen Microbiol 1991; 137:569–578
    [Google Scholar]
  195. Thomson C. J., Amyes S. G. B. TRC-1: emergence of a clavulanic acid-resistant TEM β -lactamase in a clinical strain. FEMS Microbiol Lett 1992; 91:113–117
    [Google Scholar]
  196. Vedel G., Belaaouaj A., Gilly L. Clinical isolates of Escherichia coli producing TRI β -lactamases - novel TEM- enzymes conferring resistance to β -lactamase inhibitors. J Antimicrob Chemother 1992; 30:449–462
    [Google Scholar]
  197. Henquell C., Sirot D., Chanal C. Frequency of inhibitor- resistant TEM β -lactamases in Escherichia coli isolates from urinary tract infections in France. J Antimicrob Chemother 1994; 34:707–714
    [Google Scholar]
  198. Intercontinental Medical Statistics Ruislip; Middlesex, UK: 1995
  199. Cairns J. The chromosome of Escherichia coli. Cold Spring Harbor Symp Quant Biol 1963; 28:43–46
    [Google Scholar]
  200. Gellert M., Misuuchi K., O’Dea M. H., Nash H. A. DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci USA 1976; 73:3872–3876
    [Google Scholar]
  201. Sugino A., Peebles C. L., Kruezer K. N., Cozzarelli N. R. Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc Natl Acad Sci USA 1977; 74:4767–4771
    [Google Scholar]
  202. Hooper D. C. Quinolone mode of action. Drugs 1995; 49: Suppl 210–15
    [Google Scholar]
  203. Vincent S., Glauner B., Gutmann L. Lytic effect of two fluoroquinolones, ofloxacin and pefloxacin, on Escherichia coli W7 and its consequences on peptidoglycan composition. Antimicrob Agents Chemother 1991; 35:1381–1385
    [Google Scholar]
  204. Cozens R. M., Markiewicz Z., Tuomanen E. Role of autolysins in the activities of imipenem and CGP 31608, a novel penem, against slowly growing bacteria. Antimicrob Agents Chemother 1989; 33:1819–1821
    [Google Scholar]
  205. Wolfson J. S., Hooper D. C., McHugh G. L., Bozza M. A., Swartz M. N. Mutants of Escherichia coli K12 exhibiting reduced killing by both quinolone and /3-lactam antimicrobial agents. Antimicrob Agents Chemother 1990; 34:1938–1943
    [Google Scholar]
  206. Munshi M. H., Haider K., Rahaman M. M., Sack D. A., Ahmed Z. V., Morshed M. G. Plasmid-mediated resistance to nalidixic acid in Shigella dysenteriae type I. Lancet 1987; ii:419–421
    [Google Scholar]
  207. Tanaka M., Ishii H., Sato K., Osada Y., Nishino T. Characterization of high level quinolone resistance in Staphylococcus aureus. 31st ICAAC Chicago. Washington, DC: American Society for Microbiology; 1991 Abstract 808, p 233
    [Google Scholar]
  208. Courvalin P. Plasmid-mediated 4-quinolone resistance: a real or apparent absence?. Antimicrob Agents Chemother 1990; 34:681–684
    [Google Scholar]
  209. Yoshida H., Bogaki M., Nakamura S., Ubukata K., Konno M. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J Bacteriol 1990; 172:6942–6949
    [Google Scholar]
  210. Cambau E., Gutmann L. Mechanisms of resistance to quinolones. Drugs 1993; 45: Suppl 35–23
    [Google Scholar]
  211. Yoshida H., Bogaki H., Nakamura M., Nakamura S. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother 1990; 34:1271–1272
    [Google Scholar]
  212. Yamagishi J., Yoshida H., Yamagoshi M., Nakamura S. Nalidixic acid-resistant mutations of the gyrB gene of Escherichia coli. Mol Gen Genet 1986; 204:367–373
    [Google Scholar]
  213. Chapman J. S., Georgopapadakou N. H. Routes of quinolone permeation in Escherichia coli. Antimicrob Agents Chemother 1988; 32:438–442
    [Google Scholar]
  214. Cohen S. P., McMurry L. M., Hooper D. C., Wolfson J. S., Levy S. B. Cross-resistance to fluoroquinolones in multiple-antibiotic- resistance (Mar) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with changes in addition to OmpF reduction. Antimicrob Agents Chemother 1989; 33:1318–1325
    [Google Scholar]
  215. Ohshita Y., Hiramatsu K., Yokota T. A point mutation in norA gene is responsible for quinolone resistance in Staphylococcus aureus. Biochem Biophys Res Commun 1990; 172:1028–1034
    [Google Scholar]
  216. Kaatz G. W., Seo S. M. Up regulation of norA1199 results in fluoroquinolone (FQ) resistance in Staphylococcus aureus (SA). 32nd ICAAC, Anaheim, CA. Washington, DC: American Society for Microbiology; 1992 Abstract 1481, p 357
    [Google Scholar]
  217. Trucksis M., Wolfson J. S., Hooper D. C. A novel locus conferring fluoroquinolone resistance in Staphylococcus aureus. J Bacteriol 1991; 173:5854–5860
    [Google Scholar]
  218. Thomsberry C. Susceptibility of clinical bacterial isolates to ciprofloxacin in the United States. Infection 1994; 22: Suppl 2S80–S89
    [Google Scholar]
  219. Blondeau J., Yaschuk Y. Canadian Ciprofloxacin Study Group. Canadian Ciprofloxacin Susceptibility Study: comparative study from 15 medical centers. Antimicrob Agents Chemother 1996; 40:1729–1732
    [Google Scholar]
  220. Tillotson G., Herbert J. J. F. Comparison of antibiotic susceptibility levels in the United Kingdom. 4th European Congress of Clinical Microbiology and Infectious Diseases; Nice, France: 1989 Abstract 431, p 23
    [Google Scholar]
  221. Kresken M., Hafner D., Mittermayer H. Prevalence of fluoroquinolone resistance in Europe. Infection 1994; 22: Suppl 2S90–S98
    [Google Scholar]
  222. Doem G. V., Brueggemann A., Holley H. P., Rauch A. M. Antimicrobial resistance of Streptococcus pneumoniae recovered from outpatients in the United States during the winter months of 1994 to 1995: results of a 30-center national surveillance study. Antimicrob Agents Chemother 1996; 40:1208–1213
    [Google Scholar]
  223. Goldstein F. W., Acar J. F. Epidemiology of quinolone resistance: Europe and North and South America. Drugs 1995; 49: Suppl 236–42
    [Google Scholar]
  224. Budnick L. D., Schaefler S. Ciprofloxacin-resistant methicillin- resistant Staphylococcus aureus in New York health care facilities, 1988. The New York MRSA Study Group. Am J Public Health 1990; 80:810–813
    [Google Scholar]
  225. Schaberg D. R., Dillon W. I., Terpenning M. S., Robinson K. A., Bradley S. F., Kauffman C. A. Increasing resistance of enterococci to ciprofloxacin. Antimicrob Agents Chemother 1992; 36:2533–2535
    [Google Scholar]
  226. King A., Phillips I., Amyes S. G. B., Paton R., Levin C., Tillotson G. MIC audit of routine ciprofloxacin sensitivity testing. Drugs 1993; 45: Suppl 3163–164
    [Google Scholar]
  227. Thomson C. J., Paton R. H., Hood J., Miles R. S., Amyes S. G. B. Antibiotic resistance in urinary bacteria isolated in central Scotland. Int J Antimicrob Agents 1992; 1:223–228
    [Google Scholar]
  228. MacGowan A. P., Brown N. M., Holt H. A., Lovering A. M., McCulloch S. Y., Reeves D. S. An eight-year survey of the antimicrobial susceptibility patterns of 85,971 bacteria isolated from patients in a district general hospital and the local community. J Antimicrob Chemother 1993; 31:543–557
    [Google Scholar]
  229. Amyes S. G. B., Baird D. R., Crook D. W. A multicentre study of the in-vitro activity of cefotaxime, cefuroxime, ceftazidime, ofloxacin and ciprofloxacin against blood and urinary pathogens. J Antimicrob Chemother 1994; 34:639–648
    [Google Scholar]
  230. Frost J. A., Kelleher A., Rowe B. Increasing ciprofloxacin resistance in salmonellas in England and Wales 1991-1994. J Antimicrob Chemother 1996; 37:85–91
    [Google Scholar]
  231. Brown J. C., Shanahan P. M. A., Jesudason My Thomson C. J., Amyes S. G. B. Mutations responsible for reduced susceptibility to 4-quinolones in clinical isolates of multi-resistant Salmonella typhi in India. J Antimicrob Chemother 1996; 37:891–900
    [Google Scholar]
  232. Gillespie S. H., Fox R., Patel S., Ngowi F., Tillotson G. S. Antibiotic susceptibility of Enterobacteriaceae isolated from patients in Northern Tanzania. J Antimicrob Chemother 1992; 29:227–229
    [Google Scholar]
  233. Coronado V. R., Edwards J. R., Culver D. H., Gaynes R. P. and the National Nosocomial Infections Surveillance (NNIS) System. Ciprofloxacin resistance among nosocomial Pseudomonas aeruginosa and Staphylococcus aureus in the United States. Infect Control Hosp Epidemiol 1995; 16:71–75
    [Google Scholar]
  234. Reina J., Borrell N., Serra A. Emergence of resistance to erythromycin and fluoroquinolones in thermotolerant Campylobacter strains isolated from feces 1987-1991. Eur J Clin Microbiol Infect Dis 1992; 11:1163–1166
    [Google Scholar]
  235. Child J., Andrews J., Boswell F., Brenwald N., Wise R. The in- vitro activity of CP99, 219, a new naphthylpyridone antimicrobial agent: a comparison with fluoroquinolone agents. J Antimicrob Chemother 1995; 35:869–876
    [Google Scholar]
  236. Marco F., Jones R. N., Hoban D. J., Pignatari A. C., Yamane N., Frei R. In-vitro activity of OPC-17116 against more than 6000 consecutive clinical isolates: a multicentre international study. J Antimicrob Chemother 1994; 33:647–654
    [Google Scholar]
  237. Flamm R. K., Vojtko C., Chu D. T. W. In vitro evaluation of ABT-719, a novel DNA gyrase inhibitor. Antimicrob Agents Chemother 1995; 39:964–970
    [Google Scholar]
  238. Hoshino K., Kutamura A., Morrissey I., Sato K., Kato J.-I., Ikeda F. I. Comparison of inhibition of Escherichia coli topoisome- rase IV by quinolones with DNA gyrase inhibition. Antimicrob Agents Chemother 1994; 38:2623–2627
    [Google Scholar]
  239. Timmis K. N., Gonzalez-Carrero M. I., Sekizaki T., Rojo F. Biological activities specified by antibiotic resistance plasmids. J Antimicrob Chemother 1986; 18: Suppl C1–12
    [Google Scholar]
  240. Cundliffe E. Flow antibiotic-producing organisms avoid suicide. Annu Rev Microbiol 1989; 43:207–233
    [Google Scholar]
  241. Leveau J. Y., Bouix M. Microbiologie industrielle. Les micro- organismes d’interet industriel. Collection Sciences et Techniques Agro-Alimentaires. Technique & Documentation; Paris, Lavoisier:
    [Google Scholar]
  242. Davies J., Flouk C., Yagisawa M., White T. J. Occurrence and function of aminoglycoside-modifying enzymes. In Sebek O. K., Laskin A. J. (eds) Genetics of industrial microorganisms Washington, DC: American Society for Microbiology; 1979166–169
    [Google Scholar]
  243. Datta N., Hughes V. M. Plasmids of the same Inc groups in Enterobacteria before and after the medical use of antibiotics. Nature 1983; 306:616–617
    [Google Scholar]
  244. Jacoby G. A. Extrachromosomal resistance in gram-negative organisms: the evolution of /3-lactamase. Trends Microbiol 1994; 2:357–360
    [Google Scholar]
  245. Courvalin P. Transfer of antibiotic resistance genes between gram-positive and gram-negative bacteria. Antimicrob Agents Chemother 1994; 38:1447–1451
    [Google Scholar]
  246. Committee on Human Health Risk Assessment of Using Subtherapeutic Antibiotics in Animal Feeds Human health risks with the subtherapeutic use of penicillin or tetracyclines in animal feed. Washington, DC: National Academy Press; 1989
    [Google Scholar]
  247. Perez-Trallero E., Zigorraga C. Resistance to antimicrobial agents as a public health problem: importance of the use of antibiotics in animals. Int J Antimicrob Agents 1995; 6:59–63
    [Google Scholar]
  248. Donnelly J. P., Voss A., Witte W., Murray B. E. Does the use in animals of antimicrobial agents, including glycopeptide antibiotics, influence the efficacy of antimicrobial therapy in humans?. J Antimicrob Chemother 1996; 37:389–390
    [Google Scholar]
  249. Trieu-Cuot P., Courvalin P. Evolution and transfer of aminoglycoside resistance genes under natural conditions. J Antimicrob Chemother 1986; 18: Suppl C93–102
    [Google Scholar]
  250. Endtz H. P., Ruijs G. J., Van Klingeren B., Jansen W. H., van der Reyden T., Mouton R. P. Quinolone resistance in Campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J Antimicrob Chemother 1991; 27:199–208
    [Google Scholar]
  251. Linton A. H. Flow of resistance genes in the environment and from animals to man. J Antimicrob Chemother 1986; 18: Suppl C189–197
    [Google Scholar]
  252. Anderson E. S. The ecology of transferable drug resistance in the enterobacteria. Annu Rev Microbiol 1968; 22:131–180
    [Google Scholar]
  253. Young H.-K. Antimicrobial resistance spread in aquatic environments. J Antimicrob Chemother 1993; 31:627–635
    [Google Scholar]
  254. Hawkey P. M. Resistant bacteria in the normal human flora. J Antimicrob Chemother 1986; 18: Suppl C133–139
    [Google Scholar]
  255. Bergogne-Berezin E. Resistance of Acinetobacter spp. to antimicrobials. Overview of clinical resistance patterns and therapeutic problems. In Bergogne-Berezin E., Joly-Guillou M. L., Towner K. J. (eds) Acinetobacter, microbiology, epidemiology, infections, management Boca Raton: CRC Press; 1996133–138
    [Google Scholar]
  256. Jacobson K. L., Cohen S. H., Inciardi J. F. The relationship between antecedent antibiotic use and resistance to extended- spectrum cephalosporins in group I β -lactamase-producing organisms. Clin Infect Dis 1995; 21:1107–1113
    [Google Scholar]
  257. Cohen M. L. Antimicrobial resistance: prognosis for public health. Trends Microbiol 1994; 2:422–425
    [Google Scholar]
  258. Courcol R. J., Pinkas M., Martin G. R. A seven year survey of antibiotic susceptibility and its relationship with usage. J Antimicrob Chemother 1989; 23:441–451
    [Google Scholar]
  259. Buisson Y., Tran Van Nhieu G., Ginot L. Nosocomial outbreaks due to amikacin-resistant tobramycin-sensitive Acinetobacter species: correlation with amikacin usage. J Hosp Infect 1990; 15:83–93
    [Google Scholar]
  260. Nissinen A., Gronroos P., Huovinen P. Development of /3- lactamase-mediated resistance to penicillin in middle-ear isolates of Moraxella catarrhalis in Finnish children, 1978-1993. Clin Infect Dis 1995; 21:1193–1196
    [Google Scholar]
  261. Janknegt R., van der Meer J. W. M. Sequential therapy with intravenous and oral cephalosporins. J Antimicrob Chemother 1994; 33:169–177
    [Google Scholar]
  262. Quintiliani R., Nightingale C. Transitional antibiotic therapy. Infect Dis Clin Pract 1994; 3: Suppl 3S161–S167
    [Google Scholar]
  263. Mandell G. L. Delivery of antibiotics by phagocytes. Clin Infect Dis 1994; 19:922–925
    [Google Scholar]
  264. Kreuter J. Liposomes and nanoparticles as vehicles for antibiotics. Infection 1991; 19: Suppl 4S224–S228
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-46-6-436
Loading
/content/journal/jmm/10.1099/00222615-46-6-436
Loading

Data & Media loading...

Most cited Most Cited RSS feed