1887

Abstract

The incidence of with reduced susceptibility to quinolones increased from 0.18% (63 of 3285) in 1992 to 0.56% (15 of 2663) in 1993 and 0.62% (46 of 2846) in 1994. In all, 65 of the 67 isolates of with decreased susceptibility to quinolones were characterised by pulsed-field gel electrophoresis (PFGE), auxotyping, serotyping and plasmid content. The strains were distributed among 14 auxotype/serovar (A/S) classes. Thirty isolates (46.2%) which were penicillin-susceptible with ciprofloxacin MIC90 of 0.12 mg/L and norfloxacin MIC90 of 1.0mg/L belonged to a single A/S class, OUHL/IA-2. All but two of the 30 isolates had identical PFGE restriction profiles with I restriction endonuclease. Fifteen isolates (23.1%) with MICs in the intermediate (or resistant) categories for penicillin and with ciprofloxacin and norfloxacin MIC90 of 0.25 and 4.0 mg/L and (0.5 and 4.0 mg/L) respectively, belonged to A/S class P/IB-1. The 15 isolates showed nine different patterns with I and eight patterns with I restriction endonucleases. Two of three β-lactamase-producing (PPNG) isolates belonged to A/S class P/IB-5 and had a dissimilar PFGE restriction profile with I endonuclease; the other isolate belonged to A/S class P/IB-8. The remaining 17 isolates were distributed among 11 A/S classes. Three isolates within the common A/S class NR/IB-1 were subdivided into two types by PFGE as were three isolates belonging to A/S class NR/IB-2. Overall the 65 isolates of were distributed into 30 I and 26 I macrorestriction profiles. All but one isolate harboured the 2.6-MDa cryptic plasmid and 18 isolates carried the 24.5-MDa transferable plasmid. The three PPNG isolates carried the 4.5-MDa Asian β-lactamase-producing plasmid and a 25.2-MDa conjugative plasmid was found in the two TRNG isolates.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-46-5-383
1997-05-01
2024-02-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/46/5/medmicro-46-5-383.html?itemId=/content/journal/jmm/10.1099/00222615-46-5-383&mimeType=html&fmt=ahah

References

  1. Bryan J. P., Hira S. K., Brady W. Oral ciprofloxacin versus ceftriaxone for the treatment of urethritis from resistant Neisseria gonorrhoeae in Zambia. Antimicrob Agents Che-mother 1990; 34:819–822
    [Google Scholar]
  2. Wolfson J. S., Hooper D. C. Bacterial resistance to quinolones: mechanisms and clinical importance. Rev Infect Dis 1989; 11: Suppl 5S960–S968
    [Google Scholar]
  3. Knapp J. S., Washington J. A., Doyle L. J., Neal S. W., Parekh M. C., Rice R. J. Persistence of Neisseria gonorrhoeae strains with decreased susceptibilities to ciprofloxacin and ofloxacin in Cleveland, Ohio, from 1992 through 1993. Antimicrob Agents Chemother 1994; 38:2194–2196
    [Google Scholar]
  4. Gransden W. W. R., Warren C. A., Phillips I., Hodges M., Barlow D. Decreased susceptibility of Neisseria gonorrhoeae to ciprofloxacin. Lancet 1990; 335:51
    [Google Scholar]
  5. Jephcott A. E., Turner A. Ciprofloxacin resistance in gonococci. Lancet 1990; 335:165
    [Google Scholar]
  6. Knapp J. S., Ohye R., Neal S. W., Parekh M. C., Higa H., Rice R. J. Emerging in vitro resistance to quinolones in penicillinase-producing Neisseria gonorrhoeae strains in Hawaii. Antimicrob Agents Chemother 1994; 38:2200–2203
    [Google Scholar]
  7. Harnett N., Brown S., Riley G., Terro R., Krishnan C. Decreased susceptibility of Neisseria gonorrhoeae to fluoroquinolones - Ontario, 1992-1994. Can Commun Dis Rep 1995; 213:17–21
    [Google Scholar]
  8. Danielsson D., Bygdeman S., Kallings I. Epidemiology of gonorrhoea: serogroup, antibiotic susceptibility and auxotype patterns of consecutive gonococcal isolates from ten different areas of Sweden. Scand J Infect Dis 1983; 15:33–42
    [Google Scholar]
  9. Poh C. L., Lau Q. C. Subtyping of Neisseria gonorrhoeae auxotype-serovar groups by pulsed-field gel electrophoresis. J Med Microbiol 1993; 38:366–370
    [Google Scholar]
  10. National Committee for Clinical Laboratory Standards Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 3rd edn; approved standard. NCCLS documents No. M7-A3 (Vol 13, No. 25) Villanova: Pennsylvania, National Committee for Clinical Laboratory Standards; 1993
    [Google Scholar]
  11. Smith C. L., Cantor C. R. Purification, specific fragmentation, and separation of large DNA molecules. Methods Enzymol 1987; 155:449–467
    [Google Scholar]
  12. Hendry A. T., Stewart I. O. Auxanographic grouping and typing of Neisseria gonorrhoeae. Can J Microbiol 1979; 25:512–521
    [Google Scholar]
  13. Hendry A. T. Growth responses of Neisseria gonorrhoeae auxotypes to required amino acids and bases in liquid medium. Can J Microbiol 1983; 29:1309–1313
    [Google Scholar]
  14. Tam M. R., Buchanan T. M., Sandstrom E. G. Serological classification of Neisseria gonorrhoeae with monoclonal antibodies. Infect Immun 1982; 36:1042–1053
    [Google Scholar]
  15. Knapp J. S., Tam M. R., Nowinski R. C., Holmes K. K., Sandstrom E. G. Serological classification of Neisseria gonorrhoeae with use of monoclonal antibodies to gonococcal outer membrane protein I. J Infect Dis 1984; 150:44–48
    [Google Scholar]
  16. Crosa J. H., Falkow S. Plasmids. In Gerhardt P., Murray R. G. E., Costilow R. N. et al. (eds) Manual of methods for general bacteriology Washington, DC: American Society for Microbiology; 1981266–282
    [Google Scholar]
  17. Goering R. V. Molecular epidemiology of nosocomial infection: analysis of chromosomal restriction fragment patterns by pulsed-field gel electrophoresis. Infect Control Hosp Epidemiol 1993; 14:595–600
    [Google Scholar]
  18. Gransden W. R., Warren C., Phillips I. 4-Quinolone-resistant Neisseria gonorrhoeae in the United Kingdom. J Med Microbiol 1991; 34:23–27
    [Google Scholar]
  19. Yeung K. H., Dillon J. R. First isolates of norfloxacin-resistant penicillinase-producing Neisseria gonorrhoeae (PPNG) in Canada. Can Dis Wkly Rep 1991; 171:1–3
    [Google Scholar]
  20. Tanaka M., Kumazawa J., Matsumoto T., Kobayashi I. High prevalence of Neisseria gonorrhoeae strains with reduced susceptibility to fluoroquinolones in Japan. Genitourin Med 1994; 70:90–93
    [Google Scholar]
  21. Clendennen T. E., Hames C. S., Kees E. S. In vitro antibiotic susceptibilities of Neisseria gonorrhoeae isolates in the Philippines. Antimicrob Agents Chemother 1992; 36:277–282
    [Google Scholar]
  22. Dillon J. R., Pauze M. Relationship between plasmid content and auxotype in Neisseria gonorrhoeae isolates. Infect Immun 1981; 33:625–628
    [Google Scholar]
  23. Roberts M. C. Plasmids of Neisseria gonorrhoeae and other Neisseria species. Clin Microbiol Rev 1989; 2: Suppl S18–S23
    [Google Scholar]
  24. Copley C. G., Egglestone L. Gonococci without plasmids. Lancet 1982; i:1133
    [Google Scholar]
  25. Johnson S. R., Anderson B. E., Biddle J. W., Perkins G. H., DeWitt W. E. Characterization of concatameric plasmids of Neisseria gonorrhoeae. Infect Immun 1983; 40:843–846
    [Google Scholar]
  26. van Embden J. D. A., van Klingeren B., Dessens-Kroon M., van Wijngaarden L. J. Penicillinase-producing Neisseria gonorrhoeae in the Netherlands: epidemiology and genetic and molecular characterization of their plasmids. Antimicrob Agents Chemother 1980; 18:789–797
    [Google Scholar]
  27. Rosson S., DeGooyer E., Moore A., Morcom J., Davies J. K. Site-specific recombination systems in gonococcal plasmids. In Schoolnik G. K., Brooks G. F., Falkow S. (eds) The pathogenic neisseriae Washington, DC: American Society for Microbiology; 1985175–179
    [Google Scholar]
  28. Health and Welfare Canada Canadian guidelines for the prevention, diagnosis, management and treatment of sexually transmitted diseases in neonates, children, adolescents and adults. Can Commun Dis Rep 1992; 18:SI
    [Google Scholar]
  29. Stein D. C., Danaher R. J., Cook T. M. Characterization of a gyrB mutation responsible for low-level nalidixic acid resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 1991; 35:622–626
    [Google Scholar]
  30. Deguchi T., Yasuda M., Asano M. DNA gyrase mutations in quinolone-resistant clinical isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother 1995; 39:561–563
    [Google Scholar]
  31. Belland R. J., Morrison S. G., Ison C., Huang W. M. Neisseria gonorrhoeae acquires mutations in analogous regions of gyr A and parC in fluoroquinolone-resistant isolates. Mol Microbiol 1994; 14:371–380
    [Google Scholar]
  32. O’Rourke M., Spratt B. G. Further evidence for the non-clonal population structure of Neisseria gonorrhoeae′. extensive genetic diversity within isolates of the same electrophoretic type. Microbiology 1994; 140:1285–1290
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-46-5-383
Loading
/content/journal/jmm/10.1099/00222615-46-5-383
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error