1887

Abstract

Since its discovery at the end of the nineteenth century, has undergone several changes of nomenclature and periodic changes in its perceived status as either a commensal or a pathogen. Molecular analysis based on DNA hybridisation or 16S rDNA sequence comparisons has established its phylogenetic position as a member of the Moraxellaceae and shown that it is related more closely to spp. than to the genus in which it was placed formerly. However, confusion with phenotypically similar spp. can occur in the routine diagnostic laboratory if appropriate identification tests are not performed. is now accepted as the third commonest pathogen of the respiratory tract after and . It is a significant cause of otitis media and sinusitis in children and of lower respiratory tract infections in adults, especially those with underlying chest disease. Nosocomial spread of infection, especially within respiratory wards, has been reported. Invasive infection is uncommon, but analysis of reports for England and Wales between 1992 and 1995 revealed 89 cases of bacteraemia, with the peak incidence in children aged 1-2 years. Carriage rates of are high in children and in the elderly, but its role as a commensal organism has probably been overstated in the past. Approximately 90% of strains are now β-lactamase positive and, given that the first such strain was reported in 1976, this represents a dramatic increase in frequency over the last 20 years which has not been paralleled in any other species. The BRO-1 and BRO-2 β-lactamase enzymes of are found in other Moraxellaceae, but are not related to β-lactamases of any other species and their origin is therefore unknown. Molecular and typing studies have shown that the species is genetically heterogeneous and these methods have aided epidemiological investigation. Studies of factors that may be related to pathogenicity have shown the existence of three serotypes of lipooligosaccharide and the presence of fimbriae and a possible capsule. Some strains are serum-resistant, probably by virtue of interference with complement action, whilst transferrin- and lactoferrin-binding proteins enable the organism to obtain iron from its environment. An antibody response in humans to various antigens, including highly conserved outer-membrane proteins, has been demonstrated. Increased understanding of the organism’s pathogenic properties and the host response to it may help to identify suitable vaccine targets or lead to other strategies to prevent infection. Whilst it remains, at present, the third most important respiratory pathogen, the impact of immunisation strategies for other organisms may change this position. The speed with which acquired β-lactamase demonstrates the capacity of this organism to surprise us.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-46-5-360
1997-05-01
2024-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jmm/46/5/medmicro-46-5-360.html?itemId=/content/journal/jmm/10.1099/00222615-46-5-360&mimeType=html&fmt=ahah

References

  1. Catlin B. W. Branhamella catarrhalis: an organism gaining respect as a pathogen. Clin Microbiol Rev 1990; 3:293–320
    [Google Scholar]
  2. Berk S. L. From Micrococcus to Moraxella: the reemergence of Branhamella catarrhalis. Arch Intern Med 1990; 150:2254–2257
    [Google Scholar]
  3. Frosch P., Kolle W. Die Mikrokokken. In Flugge C. (ed) Die Mikroorganismen Leipzig, Germany: Verlag von Vogel; 1896154–155
    [Google Scholar]
  4. Seifert O. Sammlungs Klinischer Vortrage. Leipzig; Germany: 1882; 24021
    [Google Scholar]
  5. Ghon A., Pfeiffer H. Der Mikrococcus catarrhalis (R. Pfeiffer) als Krankheitserreger. Z Klin Med 1902; 44:263–281
    [Google Scholar]
  6. Dunn R. A., Gordon M. H. Clinical and bacteriological aspects of an epidemic simulating influenza. BMJ 1905; 2:421–427
    [Google Scholar]
  7. Gordon J. E. The gram-negative cocci in colds and influenza. Influenza studies VII. J Infect Dis 1921; 29:462–494
    [Google Scholar]
  8. Bovre K. The genus Moraxella. In Krieg N. R., Holt J. G. (eds) Bergey’s Manual of systematic bacteriology vol 1 Baltimore, USA: Williams and Wilkins; 1984296–303
    [Google Scholar]
  9. Catlin B. W. Transfer of the organism named Neisseria catarrhalis to Branhamella gen. nov. Int J Syst Bacteriol 1970; 20:155–159
    [Google Scholar]
  10. Veron M., Lenvoise-Furet A., Coustere C., Ged C., Grimont F. Relatedness of three species of “false Neisseria”, Neisseria caviae, Neisseria cuniculi, and Neisseria ovis, by DNA-DNA hybridizations and fatty-acid analysis. Int J Syst Bacteriol 1993; 43:210–220
    [Google Scholar]
  11. Rossau R., Van Landschoot A., Gillis M., de Ley J. Taxonomy of Moraxellaceae fam. nov., a new bacterial family to accommodate the genera Moraxella, Acinetobacter, and Psychrobacter and related organisms. Int J Syst Bacteriol 1991; 41:310–319
    [Google Scholar]
  12. Enright M. C., Carter P. E., MacLean I. A., McKenzie H. Phylogenetic relationships between some members of the genera Neisseria, Acinetobacter, Moraxella, and Kingella based on partial 16S ribosomal DNA sequence analysis. Int J Syst Bacteriol 1994; 44:387–391
    [Google Scholar]
  13. General Discussion Section 1. Drugs 1986; 31: Suppl 338–39
    [Google Scholar]
  14. Ahmad F., Young H., McLeod D. T., Croughan M. J., Calder M. A. Characterisation of Branhamella catarrhalis and differentiation from Neisseria species in a diagnostic laboratory. J Clin Pathol 1987; 40:1369–1373
    [Google Scholar]
  15. Young H., Harris A. B., Tapsall J. W. Differentiation of gonococcal and non-gonococcal. neisseriae by the superoxol test. Br J Vener Dis 1984; 60:87–89
    [Google Scholar]
  16. Riley T. V. A note on hydrolysis of tributyrin by Branhamella and Neisseria. J Appl Bacteriol 1987; 62:539–542
    [Google Scholar]
  17. Peiris V., Ralphson K., Norris S., Bennett C. Not Branhamella catarrhalis: misidentification of oxidase-positive, Gram-negative cocci isolated from the genital tract. J Infect 1993; 27:338–339
    [Google Scholar]
  18. Faden H., Harabuchi Y., Hong J. J. and Tonawanda/Williamsville Pediatrics. Epidemiology of Moraxella catarrhalis in children during the first 2 years of life: relationship to otitis media. J Infect Dis 1994; 169:1312–1317
    [Google Scholar]
  19. Ejlertsen T., Thisted E., Ebbesen F., Olesen B., Renneberg J. Branhamella catarrhalis in children and adults. A study of prevalence, time of colonisation, and association with upper and lower respiratory tract infections. J Infect 1994; 29:23–31
    [Google Scholar]
  20. Vaneechoutte M., Verschraegen G., Claeys G., Weise B., van den Abeele A. M. Respiratory tract carrier rates of Moraxella (Branhamella) catarrhalis in adults and children and interpretation of the isolation of M. catarrhalis from sputum. J Clin Microbiol 1990; 28:2674–2680
    [Google Scholar]
  21. Bluestone C. D. Otitis media and sinusitis in children. Role of Branhamella catarrhalis. Drugs 1986; 31: Suppl 3132–141
    [Google Scholar]
  22. Pichichero M. E., Pichichero C. L. Persistent acute otitis media: 1. Causative pathogens. Pediatr Infect Dis J 1995; 14:178–183
    [Google Scholar]
  23. Dickinson D. P., Loos B. G., Dryja D. M., Bernstein J. M. Restriction fragment mapping of Branhamella catarrhalis: a new tool for studying the epidemiology of this middle ear pathogen. J Infect Dis 1988; 158:205–208
    [Google Scholar]
  24. Thoene D. E., Johnson C. E. Pharmacotherapy of otitis media. Pharmacotherapy 1991; 11:212–221
    [Google Scholar]
  25. Wald E. R., Milmoe G. J., Bowen A-D., Ledesma-Medina J., Salamon N., Bluestone C. D. Acute maxillary sinusitis in children. N Engl J Med 1981; 304:749–754
    [Google Scholar]
  26. Jousimies-Somer H. R., Savolainen S., Ylikoski J. S. Bacteriological findings of acute maxillary sinusitis in young adults. J Clin Microbiol 1988; 26:1919–1925
    [Google Scholar]
  27. Slevin N. J., Aitken J., Thomley P. E. Clinical and microbiological features of Branhamella catarrhalis bronchopulmonary infections. Lancet 1984; 1:782–783
    [Google Scholar]
  28. Ninane G., Joly J., Kraytman M. Bronchopulmonary infection due to Branhamella catarrhalis:11 cases assessed by transtracheal puncture. BMJ 1978; 1:276–278
    [Google Scholar]
  29. Thomley P. E., Aitken J., Drennan C. J., Mac Vicar J., Slevin N. J. Branhamella catarrhalis infection of the lower respiratory tract: reliable diagnosis by sputum examination. BMJ 1982; 285:1537–1538
    [Google Scholar]
  30. Yuen K. Y., Seto W. H., Ong S. G. The significance of Branhamella catarrhalis in bronchopulmonary infection - a case- control study. J Infect 1989; 19:251–256
    [Google Scholar]
  31. DiGiovanni C., Riley T. V., Hoyne G. F., Yeo R., Cooksey P. Respiratory tract infections due to Branhamella catarrhalis: epidemiological data from Western Australia. Epidemiol Infect 1987; 99:445–453
    [Google Scholar]
  32. McLeod D. T., Ahmad F., Power J. T., Calder M. A., Seaton A. Bronchopulmonary infection due to Branhamella catarrhalis. BMJ 1983; 287:1446–1447
    [Google Scholar]
  33. McLeod D. T., Ahmad F., Capewell S., Croughan M. J., Calder M. A., Seaton A. Increase in bronchopulmonary infection due to Branhamella catarrhalis. BMJ 1986; 292:1103–1105
    [Google Scholar]
  34. Wright P. W., Wallace R. J., Shepherd J. R. A descriptive study of 42 cases of Branhamella catarrhalis pneumonia. Am J Med 1990; 88: Suppl 5A2S–8S
    [Google Scholar]
  35. Ernst T. N., Philp M. Bacterial tracheitis caused by Branhamella catarrhalis. Pediatr Infect Dis J 1987; 6:574
    [Google Scholar]
  36. Wong V. K., Mason W. H. Branhamella catarrhalis as a cause of bacterial tracheitis. Pediatr Infect Dis J 1987; 6:945–946
    [Google Scholar]
  37. Alligood G. A., Kenny J. F. Tracheitis and supraglottis associated with Branhamella catarrhalis and respiratory syncytial vims. Pediatr Infect Dis J 1989; 8:190–191
    [Google Scholar]
  38. Meyer G. A., Shope T. R., Waecker N. J., Lanningham F. H. Moraxella (Branhamella) catarrhalis bacteremia in children. A report of two patients and review of the literature. Clin Pediatr 1995; 34:146–150
    [Google Scholar]
  39. Collazos J., de Miguel J., Ayarza R. Moraxella catarrhalis bacteremic pneumonia in adults: two cases and review of the literature. Eur J Clin Microbiol Infect Dis 1992; 11:237–240
    [Google Scholar]
  40. Alaeus A., Stiemstedt G. Branhamella catarrhalis septicemia in an immunocompetent adult. Scand J Infect Dis 1991; 23:115–116
    [Google Scholar]
  41. Wong V. K., Ross L. A. Branhamella catarrhalis septicemia in an infant with AIDS. Scand J Infect Dis 1988; 20:559–560
    [Google Scholar]
  42. CDR Weekly Reports London: Communicable Disease Surveillance Centre;1992–1995
  43. Kostiala A. A. I., Honkanen T. Branhamella catarrhalis as a cause of acute purulent pericarditis. J Infect 1989; 19:291–292
    [Google Scholar]
  44. Ahmad F., McLeod D. T., Power J. T., Calder M. A. Branhamella catarrhalis prevalence in a hospital population. J Hosp Infect 1985; 6:71–74
    [Google Scholar]
  45. Patterson T. F., Patterson J. E., Masecar B. L., Barden G. E., Hierhalzer W. J., Zervos M. J. A nosocomial outbreak of Branhamella catarrhalis confirmed by restriction endonuclease analysis. J Infect Dis 1988; 157:996–1001
    [Google Scholar]
  46. McKenzie H., Morgan M. G., Jordens J. Z., Enright M. C., Bain M. Characterisation of hospital isolates of Moraxella (Branhamella) catarrhalis by SDS-PAGE of whole-cell proteins, immunoblotting and restriction-endonuclease analysis. J Med Microbiol 1992; 37:70–76
    [Google Scholar]
  47. Morgan M. G., McKenzie H., Enright M. C., Bain M., Emmanuel F. X. S. Use of molecular methods to characterize Moraxella catarrhalis strains in a suspected outbreak of nosocomial infection. Eur J Clin Microbiol Infect Dis 1992; 11:305–312
    [Google Scholar]
  48. Richards S. J., Greening A. P., Enright M. C., Morgan M. G., McKenzie H. Outbreak of Moraxella catarrhalis in a respiratory unit. Thorax 1993; 48:91–92
    [Google Scholar]
  49. Ikram R. B., Nixon M., Aitken J., Wells E. A prospective study of isolation of Moraxella catarrhalis in a hospital during the winter months. J Hosp Infect 1993; 25:7–14
    [Google Scholar]
  50. Wallace R. J., Steingrube V. A., Nash D. R. BRO f- lactamases of Branhamella catarrhalis, and Moraxella subgenus Moraxella, including evidence for chromosomal f- lactamase transfer by conjugation in B. catarrhalis M. nonliquefaciens, and M. lacunata. Antimicrob Agents Che-mother 1989; 33:1845–1854
    [Google Scholar]
  51. Philippon A., Riou J. Y., Guibourdenche M., Sotolongo F. Detection, distribution and inhibition of Branhamella catarrhalis /3-lactamases. Drugs 1986; 31: Suppl 364–69
    [Google Scholar]
  52. Hoi-Dang A. B., Brisele Bouguenec C., Barthelemy M., Labia R. Novel /3-lactamase from Branhamella catarrhalis. Ann Microbiol 1978; 129B:397–406
    [Google Scholar]
  53. Wallace R. J., Nash D. R., Steingrube V. A. Antibiotic susceptibilities and drug resistance in Moraxella (Branhamella) catarrhalis. Am J Med 1990; 88: Suppl 5A46S–50S
    [Google Scholar]
  54. Fung C. P., Powell M., Seymour A., Yuan M., Williams J. D. The antimicrobial susceptibility of Moraxella catarrhalis isolated in England and Scotland in 1991. J Antimicrob Chemother 1992; 30:47–55
    [Google Scholar]
  55. Farmer T., Reading C. /3-lactamases of Branhamella catarrhalis and their inhibition by clavulanic acid. Antimicrob Agents Chemother 1982; 21:506–508
    [Google Scholar]
  56. Nash D. R., Wallace R. J., Steingrube V. A., Shurin P. A. Isoelectric focusing of /3-lactamases from sputum and middle ear isolates of Branhamella catarrhalis recovered in the United States. Drugs 1986; 31: Suppl 348–54
    [Google Scholar]
  57. Fung C.-P., Yeo S.-F., Livermore D. M. Extraction of beta-lactamase from Moraxella catarrhalis. J Antimicrob Chemother 1994; 34:183–184
    [Google Scholar]
  58. Kamme C., Vang M., Stahl S. Intrageneric and intergeneric transfer of Branhamella catarrhalis /3-lactamase production. Scand J Infect Dis 1984; 16:153–155
    [Google Scholar]
  59. Kamme C., Vang M., Stahl S. Transfer of /3-lactamase production in Branhamella catarrhalis. Scand J Infect Dis 1983; 15:225–226
    [Google Scholar]
  60. Eliasson I., Kamme C., Prellner K. Beta-lactamase production in the upper respiratory tract flora. Eur J Clin Microbiol 1986; 5:507–512
    [Google Scholar]
  61. Steingrube V. A., Wallace R. J., Beaulieu D. A membrane-bound precursor /3-lactamase in strains of Moraxella catarrhalis and Moraxella nonliquefaciens that produce periplasmic BRO-1 and BRO-2 /3-lactamases. J Antimicrob Chemother 1993; 31:237–244
    [Google Scholar]
  62. Kamme C., Eliasson I., Knutson B. K., Vang M. Plasmid mediated /3-lactamase in Branhamella catarrhalis. Drugs 1986 31 Suppl 355–63
    [Google Scholar]
  63. Molstad S., Eliasson I., Hovelius B., Kamme C., Schalen C. Beta-lactamase production in the upper respiratory tract flora in relation to antibiotic consumption: a study in children attending day nurseries. Scand J Infect Dis 1988; 20:329–334
    [Google Scholar]
  64. Christensen J. J., Keiding J., Schumacher H., Braun B. Recognition of a new Branhamella catarrhalis /3-lactamase BRO-3. J Antimicrob Chemother 1991; 28:774–775
    [Google Scholar]
  65. Robledano L., Rivera M. J., Otal I., Gomez-Lus R. Enzymatic modification of aminoglycoside antibiotics by Branhamella catarrhalis carrying an R factor. Drugs Exp Clin Res 1987; 13:137–143
    [Google Scholar]
  66. Hoi C., van Dijke E. E. M., Verduin C. M., Verhoef J., van Dijk H. Experimental evidence for Moraxella-induced penicillin neutralization in pneumococcal pneumonia. J Infect Dis 1994; 170:1613–1616
    [Google Scholar]
  67. Wardle J. K. Branhamella catarrhalis as an indirect pathogen. Drugs 1986; 31: Suppl 393–96
    [Google Scholar]
  68. Doem G. V. Trends in antimicrobial susceptibility of bacterial pathogens of the respiratory tract. Am J Med 1995; 99: Suppl 6B3S–7S
    [Google Scholar]
  69. Kallings I. Sensitivity of Branhamella catarrhalis to oral antibiotics. Drugs 1986; 31: Suppl 317–22
    [Google Scholar]
  70. Roberts M. C., Pang Y., Spencer R. C., Winstanley T. G., Brown B. A., Wallace R. J. Tetracycline resistance in Moraxella (Branhamella) catarrhalis: demonstration of two clonal outbreaks by using pulsed-field gel electrophoresis. Antimicrob Agents Chemother 1991; 35:2453–2455
    [Google Scholar]
  71. Zheng X., Cao Y. Beta-lactamase producing Branhamella in Beijing, China. Pediatr Infect Dis J 1988; 7:744
    [Google Scholar]
  72. Vaneechoutte M., Verschraegen G., Claeys G., van den Abeele A.-M. Serological typing of Branhamella catarrhalis strains on the basis of lipopolysaccharide antigens. J Clin Microbiol 1990; 28:182–187
    [Google Scholar]
  73. Ahmad F., McLeod D. T., Power J. T., Calder M. A. Branhamella catarrhalis prevalence in a hospital population. J Hosp Infect 1985; 6:71–74
    [Google Scholar]
  74. Bartos L. C., Murphy T. F. Comparison of the outer membrane proteins of 50 strains of Branhamella catarrhalis. J Infect Dis 1988; 158:761–765
    [Google Scholar]
  75. Picard B., Goullet P., Denamur E., Suermondt G. Esterase electrophoresis: a molecular tool for studying the epidemiology of Branhamella catarrhalis nosocomial infection. Epidemiol Infect 1989; 103:547–554
    [Google Scholar]
  76. Fox R. H., McClain D. E. Evaluation of the taxonomic relationship of Micrococcus cryophilus, Branhamella catarrhalis, and Neisseriae by comparative polyacrylamide gel electrophoresis of soluble proteins. Int J Syst Bacteriol 1974; 24:172–176
    [Google Scholar]
  77. Soto-Hemandez J. L., Holtsclaw-Berk S., Harvill L. M., Berk S. L. Phenotypic characteristics of Branhamella catarrhalis strains. J Clin Microbiol 1989; 27:903–908
    [Google Scholar]
  78. Cook P. P., Hecht D. W., Snydman D. R. Nosocomial Branhamella catarrhalis in a paediatric intensive care unit: risk factors for disease. J Hosp Infect 1989; 13:299–307
    [Google Scholar]
  79. Kawakami Y., Ueno I., Katsuyama T., Furihata K., Matsumoto H. Restriction fragment length polymorphism (RFLP) of genomic DNA of Moraxella (Branhamella) catarrhalis isolates in a hospital. Microbiol Immunol 1994; 38:891–895
    [Google Scholar]
  80. Tenover F. C., Arbeit R. D., Goering R. V. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995; 33:2233–2239
    [Google Scholar]
  81. Selander R. K., Caugant D. A., Whittam T. S. Genetic structure and variation in natural populations of Escherichia coli. In Neidhardt F. C., Ingraham J. L., Law K. B., Magasanik B., Schaechter M., Umbarger H. E. (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology vol 2 Washington, USA: American Society for Microbiology; 19871625–1648
    [Google Scholar]
  82. Smith J. M., Smith N. H., O’Rourke M., Spratt B. G. How clonal are bacteria?. Proc Natl Acad Sci USA 1993; 90:4384–4388
    [Google Scholar]
  83. Murphy T. F. The surface of Branhamella catarrhalis: a systematic approach to the surface antigens of an emerging pathogen. Pediatr Infect Dis J 1989; 81: Suppl S75–S77
    [Google Scholar]
  84. Edebrink P., Jansson P.-E., Rahman M. M. Structural studies of the O-polysaccharide from the lipopolysaccharide of Moraxella (Branhamella) catarrhalis serotype A (strain ATCC 25238). Carbohydr Res 1994; 257:269–284
    [Google Scholar]
  85. Masoud H., Perry M. B., Brisson J.-R., Uhrin D., Richards J. C. Structural elucidation of the backbone oligosaccharide from the lipopolysaccharide of Moraxella catarrhalis serotype A. Can J Chem 1994; 72:1466–1477
    [Google Scholar]
  86. Rahman M., Holme T. Antibody response in rabbits to serotype-specific determinants in lipopolysaccharides from Moraxella catarrhalis. J Med Microbiol 1996; 44:348–354
    [Google Scholar]
  87. Edebrink P., Jansson P.-E., Rahman M. M., Widmalm G., Holme T., Rahman M. Structural studies of the O-antigen oligosaccharides from two strains of Moraxella catarrhalis serotype C. Carbohydr Res 1995; 266:237–261
    [Google Scholar]
  88. Doyle W. J. Animal models of otitis media: other pathogens. Pediatr Infect Dis J 1989; 81: Suppl S45–S47
    [Google Scholar]
  89. Storm Fomsgaard J., Fomsgaard A., Hoi by N., Bruun B., Galanos C. Comparative immunochemistry of lipopolysaccharides from Branhamella catarrhalis strains. Infect Immun 1991; 59:3346–3349
    [Google Scholar]
  90. Beachey E. H. Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surfaces. J Infect Dis 1981; 143:325–345
    [Google Scholar]
  91. Marrs C. F., Weir S. Pili (fimbriae) of Branhamella species. Am J Med 1990; 88: Suppl 5A36S–40S
    [Google Scholar]
  92. Hermodson M. A., Chen K. C. S., Buchanan T. M. Neisseria pili proteins: amino-terminal amino acid sequences and identification of an unusual amino acid. Biochemistry 1978; 17:442–445
    [Google Scholar]
  93. Schoolnik G. K., Fernandez R., Tai Y. T., Rothbard J., Gothschlich E. C. Gonococcal pili: primary structure and receptor binding domain. J Exp Med 1984; 159:1351–1370
    [Google Scholar]
  94. Froholm L. O., Sletten K. Purification and N-terminal sequence of a fimbrial protein from Moraxella nonliquefaciens. FEBS Lett 1977; 73:29–32
    [Google Scholar]
  95. Sastry P. A., Pearlstone J. R., Smillie L. B., Paranchych W. Amino acid sequence of pilin isolated from Pseudomonas aeruginosa PAK. FEBS Lett 1983; 151:253–256
    [Google Scholar]
  96. Taylor R. K., Miller V. L., Furlong D. B., Mekalanos J. J. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci USA 1987; 84:2833–2837
    [Google Scholar]
  97. Marrs C. F., Schoolnik G., Koomey J. M., Hardy J., Rothbard J., Falkow S. Cloning and sequencing of a Moraxella bovis pilin gene. J Bacteriol 1985; 163:132–139
    [Google Scholar]
  98. Ruehl W. W., Marrs C. F., Fernandez R., Falkow S., Schoolnik G. K. Purification, characterization, and pathogenicity of Moraxella bovis pili. J Exp Med 1988; 168:983–1002
    [Google Scholar]
  99. Klemm P. Fimbrial adhesins of Escherichia coli. Rev Infect Dis 1985; 7:321–340
    [Google Scholar]
  100. Ahmed K., Rikitomi N., Nagatake T., Matsumoto K. Electron microscopic observation of Branhamella catarrhalis. Microbiol Immunol 1990; 34:967–975
    [Google Scholar]
  101. Ahmed K., Rikitomi N., Matsumoto K. Fimbriation, hemagglutination and adherence properties of fresh clinical isolates of Branhamella catarrhalis. Microbiol Immunol 1992; 36:1009–1017
    [Google Scholar]
  102. Ahmed K., Masaki H., Dai T. C. Expression of fimbriae and host response in Branhamella catarrhalis respiratory infections. Microbiol Immunol 1994; 38:767–771
    [Google Scholar]
  103. Ahmed K., Matsumoto K., Rikitomi N., Nagatake T. Attachment of Moraxella catarrhalis to pharyngeal epithelial cells is mediated by a glycosphingolipid receptor. FEMS Microbiol Lett 1996; 135:305–309
    [Google Scholar]
  104. Densen P. Interaction of complement with Neisseria meningitidis and Neisseria gonorrhoeae. Clin Microbiol Rev 1989; 2: Suppl SI1–S17
    [Google Scholar]
  105. Densen P. Complement deficiencies and meningococcal disease. Clin Exp Immunol 1991; 86: Suppl 157–62
    [Google Scholar]
  106. Verduin C. M., Hoi C., Bootsma H. J., Verhoef J., van Dijk H. Observations on constitutional resistance to infection. Immunol Today 1993; 14:44–45
    [Google Scholar]
  107. Verduin C. M., Jansze M., Hoi C., Mollnes T. E., Verhoef J., van Dijk H. Differences in complement activation between complement-resistant and complement-sensitive Moraxella (Branhamella) catarrhalis strains occur at the level of membrane attack complex formation. Infect Immun 1994; 62:589–595
    [Google Scholar]
  108. Helminen M. E., Maciver I., Paris M. A mutation affecting expression of a major outer membrane protein of Moraxella catarrhalis alters serum resistance and survival in vivo. J Infect Dis 1993; 168:1194–1201
    [Google Scholar]
  109. Hoi C., Verduin C. M., Van Dyke E. E. A., Verhoef J., Fleer A., van Dijk H. Complement resistance is a virulence factor of Branhamella (Moraxella) catarrhalis. FEMS Immunol Med Microbiol 1995; 11:207–212
    [Google Scholar]
  110. Payne S. M. Iron acquisition in microbial pathogenesis. Trends Microbiol 1993; 1:66–69
    [Google Scholar]
  111. Wooldridge K. G., Williams P. H. Iron uptake mechanisms of pathogenic bacteria. FEMS Microbiol Rev 1993; 12:325–348
    [Google Scholar]
  112. Comelissen C. N., Sparling P. F. Iron piracy: acquisition of transferrin-bound iron by bacterial pathogens. Mol Microbiol 1994; 14:843–850
    [Google Scholar]
  113. Schryvers A. B., Lee B. C. Comparative analysis of the transferrin and lactoferrin binding proteins in the family Neisseriaceae. Can J Microbiol 1989; 35:409–415
    [Google Scholar]
  114. Campagnari A. A., Shanks K. L., Dyer D. W. Growth of Moraxella catarrhalis with human transferrin and lactoferrin: expression of iron-repressible proteins without siderophore production. Infect Immun 1994; 62:4909–4914
    [Google Scholar]
  115. Novotny P., Short J. A., Walker P. D. An electron-microscope study of naturally occurring and cultured cells of Neisseria gonorrhoeae. J Med Microbiol 1975; 8:413–427
    [Google Scholar]
  116. Reyn A. Family I. Neisseriaceae Prevot. In Buchanan R. E., Gibbons N. E. (eds) Bergey’s Manual of determinative bacteriology 8th edn Baltimore: Williams and Wilkins; 1974427-433–442-443
    [Google Scholar]
  117. Hellio R., Guibourdenche M., Collatz E., Riou J. Y. The envelope structure of Branhamella catarrhalis as studied by transmission electron microscopy. Ann Inst Pasteur Microbiol 1988; 139:515–525
    [Google Scholar]
  118. Ahmed K., Rikitomi N., Ichinose A., Matsumoto K. Possible presence of a capsule in Branhamella catarrhalis. Microbiol Immunol 1991; 35:361–366
    [Google Scholar]
  119. Devalia J. L., Grady D., Harmanyeri Y., Tabaqchali S., Davies R. J. Histamine synthesis by respiratory tract micro-organisms: possible role in pathogenicity. J Clin Pathol 1989; 42:516–522
    [Google Scholar]
  120. Wilson R. Haemophilus influenzae in chronic and recurrent chest infections. Respir Dis Pract 1987 Suppl 17
    [Google Scholar]
  121. Eliasson I. Serological identification of Branhamella catarrhalis. Serological evidence for infection. Drugs 1986; 31: Suppl 37–10
    [Google Scholar]
  122. Goldblatt D., Turner M. W., Levinsky R. J. Branhamella catarrhalis. antigenic determinants and the development of the IgG subclass response in childhood. J Infect Dis 1990; 162:1128–1135
    [Google Scholar]
  123. Carson R. T., McDonald D. F., Kehoe M. A., Calvert J. E. Influence of Gm allotype on the IgG subclass response to streptococcal M protein and outer membrane proteins of Moraxella catarrhalis. Immunology 1994; 83:107–113
    [Google Scholar]
  124. Murphy T. F. Studies of the outer membrane proteins of Branhamella catarrhalis. Am J Med 1990; 88: Suppl 5A41S–45S
    [Google Scholar]
  125. Helminen M. E., Maciver I., Latimer J. L. A large, antigenically conserved protein on the surface of Moraxella catarrhalis is a target for protective antibodies. J Infect Dis 1994; 170:867–872
    [Google Scholar]
  126. Helminen M. E., Beach R., Maciver I., Jarosik G., Hansen E. J., Leinonen M. Human immune response against outer membrane proteins of Moraxella (Branhamella) catarrhalis determined by immunoblotting and enzyme immunoassay. Clin Diagn Lab Immunol 1995; 2:35–39
    [Google Scholar]
  127. Sethi S., Hill S. L., Murphy T. F. Serum antibodies to outer membrane proteins (OMPs) of Moraxella (Branhamella) catarrhalis in patients with bronchiectasis: identification of OMP B1 as an important antigen. Infect Immun 1995; 63:1516–1520
    [Google Scholar]
  128. Sarwar J., Campagnari A. A., Kirkham C., Murphy T. F. Characterization of an antigenically conserved heat-modifiable major outer membrane protein of Branhamella catarrhalis. Infect Immun 1992; 60:804–809
    [Google Scholar]
  129. Rahman M., Holme T., Jonsson I., Krook A. Lack of serotype-specific antibody response to lipopolysaccharide antigens of Moraxella catarrhalis during lower respiratory tract infection. Eur J Clin Microbiol Infect Dis 1995; 14:297–304
    [Google Scholar]
/content/journal/jmm/10.1099/00222615-46-5-360
Loading
/content/journal/jmm/10.1099/00222615-46-5-360
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error