1887

Abstract

Prosthetic devices are frequently used for temporary or permanent drainage of cerebrospinal fluid (CSF), i.e., ventricular catheters with or without external monitoring devices and shunts. Infections constitute a serious complication in the use of biomaterials in contact with CSF; coagulase-negative staphylococci (CNS) are the most common aetiological agents. In the present study, polyvinylchloride (PVC) and PVC with endpoint-attached heparin were exposed to human CSF under perfusion to mimic conditions . Adhesion of strains of CNS isolated from patients with or without biomaterial-associated infection was determined: (i) after pre-incubation with fibronectin (Fn) or vitronectin (Vn) to block bacterial surface binding structures; and (ii) after pre-incubation of biomaterials with antibodies to Fn or Vn to block exposure of bacteria-binding domains on these host proteins. Pre-incubation of bacterial cells with Vn significantly reduced subsequent adhesion to polystyrene precoated with Vn 0.5 / well. When PVC pre-exposed to CSF was incubated with antibodies to Vn, subsequent bacterial adhesion of a Vn-binding strain, 5703, was significantly reduced. The study shows that Vn may mediate adhesion of CNS in the presence of CSF. However, strains retrieved from biomaterials did not express binding of Vn or Fn to a higher extent than non-biomaterial-associated strains. Expression of heparin binding under static conditions did not correlate with staphylococcal adhesion to heparinised polymers under perfusion with CSF. The extent of adhesion of staphylococci to heparinised PVC was either reduced or the same as to unheparinised PVC.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-46-4-285
1997-04-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/46/4/medmicro-46-4-285.html?itemId=/content/journal/jmm/10.1099/00222615-46-4-285&mimeType=html&fmt=ahah

References

  1. Callaghan R. P., Cohen S. J., Stewart G. T. Septicaemia due to colonization of Spitz-Holtzer valves by staphylococci. Five cases treated with methicillin. BMJ 1961; 1:860–863
    [Google Scholar]
  2. George R., Leibrock L., Epstein M. Long-term analysis of cerebrospinal fluid shunt infections. A 25-year experience. J Neurosurg 1979; 51:804–811
    [Google Scholar]
  3. Renier D., Lacombe J., Pierre-Kahn A., Sainte-Rose C., Hirsch J.-F. Factors causing acute shunt infection. Computer analysis of 1174 operations. J Neurosurg 1984; 61:1072–1078
    [Google Scholar]
  4. Gardner P., Leipzig T. J., Sadigh M. Infections of mechanical cerebrospinal fluid shunts. Curr Clin Top Infect Dis 1988; 9:185–214
    [Google Scholar]
  5. Ammirati M., Raimondi A. J. Cerebrospinal fluid shunt infections in children. A study on the relationship between the etiology of hydrocephalus, age at time of shunt placement, and infection rate. Childs Nerv Syst 1987; 3:106–109
    [Google Scholar]
  6. Zwahlen A., Nydegger U. E., Vaudaux P., Lambert P.-H., Waldvogel F. A. Complement-mediated opsonic activity in normal and infected human cerebrospinal fluid: early response during bacterial meningitis. J Infect Dis 1982; 145:635–646
    [Google Scholar]
  7. Simberkoff M. S., Moldover N. H., Rahal J. Absence of detectable bactericidal and opsonic activities in normal and infected human cerebrospinal fluids. A regional host deficiency. J Lab Clin Med 1980; 95:362–372
    [Google Scholar]
  8. Bale M. D., Wohlfahrt L. A., Mosher D. R., Tomasini B., Sutton R. C. Identification of vitronectin as a major plasma protein adsorbed on polymer surfaces of different copolymer composition. Blood 1989; 74:2698–2706
    [Google Scholar]
  9. Fabrizius-Homan D. J., Cooper S. L. Competitive adsorption of vitronectin with albumin, fibrinogen, and fibronectin on polymeric biomaterials. J Biomed Mater Res 1991; 25:953–971
    [Google Scholar]
  10. Anderson J. M., Bonfield T. L., Ziats N. P. Protein adsorption and cellular adhesion and activation on biomedical polymers. Int J A rtif Organs 1990; 13:375–382
    [Google Scholar]
  11. Rapoza R. J., Horbett T. A. Postadsorptive transitions in fibrinogen: influence of polymer properties. J Biomed Mater Res 1990; 24:1263–1287
    [Google Scholar]
  12. Grinnell F., Feld M. K. Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in serum-containing medium. J Biol Chem 1982; 257:4888–4893
    [Google Scholar]
  13. Pitt W. G., Park K., Cooper S. L. Sequential protein adsorption and thrombus deposition on polymeric biomaterials. J Coll Interface Sci 1986; 111:343–362
    [Google Scholar]
  14. Ryden C., Rubin K., Speziale P., Hook M., Lindberg M., Wadstrom T. Fibronectin receptors from Staphylococcus aureus . J Biol Chem 1983; 258:3396–3401
    [Google Scholar]
  15. Barbucci R., Magnani A. Conformation of human plasma proteins at polymer surfaces: the effectiveness of surface heparinization. Biomaterials 1994; 15:955–962
    [Google Scholar]
  16. Hjerten S., Wadstrom T. What types of bonds are responsible for the adhesion of bacteria and viruses to native and artificial surfaces?. In Wadstrom T., Eliasson I., Holder I. A., Ljungh A. (eds) Pathogenesis of wound and biomaterial-associated infections London: Springer Verlag; 1990245–253
    [Google Scholar]
  17. Maki D. G., Weise C. E., Sarafin H. W. A semiquantitative culture method for identifying intravenous-catheter-related infection. N Engl J Med 1977; 296:1305–1309
    [Google Scholar]
  18. Vaudaux P., Pittet D., Haeberli A. Fibronectin is more active than fibrin or fibrinogen in promoting Staphylococcus aureus adherence to inserted intravascular catheters. J Infect Dis 1993; 167:633–641
    [Google Scholar]
  19. Herrmann M., Suchard S. J., Boxer L. A., Waldvogel F. A., Lew P. D. Thrombospondin binds to Staphylococcus aureus and promotes staphylococcal adherence to surfaces. Infect Immun 1991; 59:279–288
    [Google Scholar]
  20. Langley J. M., LeBlanc J. C., Drake J., Milner R. Efficacy of antimicrobial prophylaxis in placement of cerebrospinal fluid shunts: meta-analysis. Clin Infect Dis 1994; 17:98–108
    [Google Scholar]
  21. Schierholz J., Jansen B., Jaenicke L., Pulverer G. In-vitro efficacy of an antibiotic releasing silicone ventricle catheter to prevent shunt infection. Biomaterials 1994; 15:996–1000
    [Google Scholar]
  22. Vulic I., Pijpers A. P., Okano T. G., Kim S. W., Feijen J. Heparin-containing block copolymers. J Mater Sci Mater Med 1993; 4:353–365
    [Google Scholar]
  23. Goosen M. F.A., Sefton M. V. Properties of a heparin-poly(vinyl alcohol) hydrogel coating. J Biomed Mater Res 1983; 17:359–373
    [Google Scholar]
  24. Ma X., Mohammad S. F., Kim S. W. Interaction of heparin with polyallylamine-immobilized surfaces. J Biomed Mater Res 1993; 27:357–365
    [Google Scholar]
  25. Kinney E. V., Bandyk D. F., Seabrook G. A., Kelly H. M., Towne J. B. Antibiotic-bonded PTFE vascular grafts: the effect of silver antibiotic on bioactivity following implantation. J Surg Res 1991; 50:430–435
    [Google Scholar]
  26. Spangberg M., Kihlstrom I., Bjorklund H., Bjurstrom S., Lydahl E., Larsson R. Improved biocompatibility of intraocular lenses by heparin surface modification: a 12-month implantation study in monkeys. J Cataract Refract Surg 1990; 16:170–177
    [Google Scholar]
  27. Liang O. D., Ascencio F., Fransson L.-A., Wadstrom T. Binding of heparin sulfate to Staphylococcus aureus . Infect Immun 1992; 60:899–906
    [Google Scholar]
  28. Paulsson M., Gouda I., Larm O., Ljungh A. Adherence of coagulase-negative staphylococci to heparin and other glycosaminoglycans immobilized on polymer surfaces. J Biomed Mater Res 1994; 28:311–317
    [Google Scholar]
  29. Strachan C. J.L., Newsom S. W.B., Ashton T. R. The clinical use of an antibiotic-bonded graft. Eur J Vase Surg 1991; 5:627–632
    [Google Scholar]
  30. Yu J., Montelius M. N., Paulsson M. Adhesion of coagulase-negative staphylococci and adsorption of plasma proteins to heparinised polymer surfaces. Biomaterials 199415805–814
    [Google Scholar]
  31. Paulsson M., Petersson A.-C., Ljungh A. Serum and tissue protein binding and cell surface properties of Staphylococcus lugdunensis . J Med Microbiol 1993; 38:96–102
    [Google Scholar]
  32. Paulsson M., Kober M., Freij-Larsson C., Stollenwerk M., Wesslen B., Ljungh A. Adhesion of staphylococci to chemically modified and native polymers and the influence of preadsorbed fibronectin, vitronectin and fibrinogen. Biomaterials 1993; 14:845–853
    [Google Scholar]
  33. Christensen G. D., Simpson W. A., Bisno A. L., Beachey E. H. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun 1982; 37:318–326
    [Google Scholar]
  34. Larm O., Adolfsson L., Gouda I., Malmberg A., Olsson P. An improved method for covalent immobilization of heparin by end point attachment. Thromb Haemost 1987; 58:84–91
    [Google Scholar]
  35. Berne R. M., Levy M. N. Hemodynamics. In Berne R. M., Levy M. N. (eds) Physiology St Louis: C V Mosby; 1988472–485
    [Google Scholar]
  36. Vuento M., Vaheri A. Purification of fibronectin from human plasma by affinity chromatography under non-denaturing conditions. Biochem J 1979; 183:331–337
    [Google Scholar]
  37. Yatohgo T., Izumi M., Kashiwagi H., Hayashi M. Novel purification of vitronectin from human plasma by heparin affinity chromatography. Cell Struct Funct 1988; 13:281–292
    [Google Scholar]
  38. Gristina A. G. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 1987; 237:1588–1595
    [Google Scholar]
  39. Vohra R., Thomson G. J.L., Carr H. M.H., Sharma H., Walker M. G. The response of rapidly formed adult human endothelial-cell monolayers to shear stress of flow: a comparison of fibronectin-coated Teflon and gelatin-impregnated Dacron grafts. Surgery 1992; 111:210–220
    [Google Scholar]
  40. Appelgren P., Ransjo U., Bindslev L., Larm O. Does surface heparinisation reduce bacterial colonisation of central venous catheters?. Lancet 1995; 345:130
    [Google Scholar]
  41. Nilsson U. R., Larm O., Nilsson B., Storm K.-E., Elwing H., Nilsson-Ekdahl K. Modification of the complement binding properties of polystyrene: effects of end-point heparin attachment. Scand J Immunol 1993; 37:349–354
    [Google Scholar]
  42. Yu J., Andersson R., Wang L.-Q., Bengmark S., Ljungh A. Fibronectin on the surface of biliary drain materials – a role in bacterial adherence. J Surg Res 1995; 59:596–600
    [Google Scholar]
  43. Ljungh A., Wadstrom T. Binding of extracellular matrix proteins by microbes. In Doyle R. J., Ofek I. (eds) Methods of enzymology. Microbial adhesion New York: Academic Press; 1995501–514
    [Google Scholar]
  44. Brooks D. E., Trust T. J. Enhancement of bacterial adhesion by shear forces: characterization of the haemagglutination induced by Aeromonas salmonicida strain 438. J Gen Microbiol 1983; 129:3661–3669
    [Google Scholar]
  45. Dickinson R. B., Nagal J. A., McDevitt D., Foster T. J., Proctor R. A., Cooper S. L. Quantitative comparison of clumping factor- and coagulase-mediated Staphylococcus aureus adhesion to surface-bound fibrinogen under flow. Infect Immun 1995; 63:3143–3150
    [Google Scholar]
  46. Pitt W. G., McBride M. O., Barton A. J., Sagers R. D. Air-water interface displaces adsorbed bacteria. Biomaterials 1993; 14:605–508
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-46-4-285
Loading
/content/journal/jmm/10.1099/00222615-46-4-285
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error