1887

Abstract

The rRNA gene restriction patterns and the polymerase chain reaction (PCR) fingerprinting types of 53 O1 isolates were studied. Five and eight patterns were observed from 27 toxigenic and 26 non-toxigenic O1 isolates after BgfI cleavage. PCR fingerprinting with three primer sets aimed at enterobacterial repetitive intergenic consensus (ERIC) sequences, ERIC-related sequences in , another kind of repeated sequences in (VCR) and arbitrary sequences divided the same strains into seven and 10 PCR types, respectively. Eight ribotypes had unique PCR patterns. PCR fingerprinting identified more than one pattern among isolates within each of the remaining ribotypes. However, ribotyping was able to differentiate the same PCR types in one case. A single ribotype and a single PCR pattern were found in toxigenic O1 strains isolated in Taiwan from imported food and imported cases of cholera between 1993 and 1995. Typing of O1 by PCR fingerprinting correlated well with ribotyping, but was more discriminating. PCR assay provides a rapid and simple means of typing these strains for epidemiological studies.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-46-11-941
1997-11-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/46/11/medmicro-46-11-941.html?itemId=/content/journal/jmm/10.1099/00222615-46-11-941&mimeType=html&fmt=ahah

References

  1. Kamal A. M. The seventh pandemic of cholera. In Barua D., Burrows W. (eds) Cholera: Philadelphia, Saunders; 19741–14
    [Google Scholar]
  2. Wachsmuth K., Olsvik O., Evins G. M., Popovic T. Molecular epidemiology of cholera. In Wachsmuth I. K., Blake P. A., Olsvik O. (eds) Vibrio cholerae and cholera: molecular to global perspectives Washington, DC: ASM Press; 1994357–370
    [Google Scholar]
  3. Benenson A. Cholera. In Evans A. S., Brachman P. S. (eds) Bacterial infections of humans New York: Plenum Press; 1991207–225
    [Google Scholar]
  4. Finkelstein R. A. Cholera, the cholera enterotoxins, and the cholera enterotoxin-related enterotoxin family. In Owen P., Foster T. J. (eds) Immunological and molecular genetic analysis of bacterial pathogens Amsterdam: Elsevier/North Holland Science Publishing; 198885–102
    [Google Scholar]
  5. Wachsmuth I. K., Evins G. M., Fields P. I. The molecular epidemiology of cholera in Latin America. J Infect Dis 1993; 167:621–626
    [Google Scholar]
  6. Herrington D. A., Hall R. H., Losonsky G., Mekalanos J. J., Taylor R. K., Levine M. M. Toxin, toxin co-regulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med 1988; 168:1487–1492
    [Google Scholar]
  7. Spangler B. D. Structure and function of cholera toxin and related Escherichia coli heat-labile enterotoxin. Microbiol Rev 1992; 56:622–647
    [Google Scholar]
  8. Almeida R. J., Hickman-Brenner F. W., Sowers E. G., Puhr N. D., Farmer J. J., Wachsmuth I. K. Comparison of a latex aggulutination assay and an enzyme-linked immunosorbent assay for detecting cholera toxin. J Clin Microbiol 1990; 28:128–130
    [Google Scholar]
  9. Barrett T. J., Blake P. A. Epidemiological usefulness of changes in hemolytic activity of Vibrio cholera biotype El Tor during the seventh pandemic. J Clin Microbiol 1981; 13:126–129
    [Google Scholar]
  10. Stroeher U. H., Karageorgos L. E., Morona R., Manning P. A. Serotype convesion in Vibrio cholerae O1. Proc Natl Acad Sci USA 1992; 89:2566–2570
    [Google Scholar]
  11. Chen F., Evins G. M., Cook W. L., Ameida R., Hargrett-Bean N., Wachsmuth K. Genetic diversity among toxigenic and nontoxigenic Vibrio cholerae O1 isolated from the Western Hemisphere. Epidemiol Infect 1991; 107:225–233
    [Google Scholar]
  12. Stull T. L., LiPuma J. J., Edlind T. D. A broad-spectrum probe for molecular epidemiology of bacteria: ribosomal RNA. J Infect Dis 1988; 157:280–286
    [Google Scholar]
  13. Koblavi S., Grimont F., Grimont P. A. D. Clonal diversity of Vibrio cholerae O1 evidenced by rRNA gene restriction patterns. Res Microbiol 1990; 141:645–657
    [Google Scholar]
  14. Popovic T., Bopp C., Olsvik O., Wachsmuth K. Epidemiologic application of a standardized ribotype scheme for Vibrio cholerae O1. J Clin Microbiol 1993; 31:2474–2482
    [Google Scholar]
  15. Karaolis D. K. R., Lan R., Reeves P. R. Molecular evolution of the seventh-pandemic clone of Vibrio cholerae and its relationship to other pandemic and epidemic V. cholerae isolates. J Bacteriol 1994; 176:6199–6206
    [Google Scholar]
  16. Cameron D. N., Khambaty F. M., Wachsmuth I. K., Tauxe R. V., Barrett T. J. Molecular characterization of Vibrio cholerae O1 strains by pulsed-field gel electrophoresis. J Clin Microbiol 1994; 32:1685–1690
    [Google Scholar]
  17. Erlich H. A., Gelfand D., Sninsky J. J. Recent advances in the polymerase chain reaction. Science 1991; 252:1643–1651
    [Google Scholar]
  18. Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 1990; 18:7213–7218
    [Google Scholar]
  19. Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 1990; 18:6531–6535
    [Google Scholar]
  20. Versalovic J., Koeuth T., Lupski J. R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 1991; 19:6823–6831
    [Google Scholar]
  21. Berche P., Poyart C., Abachin E. The novel epidemic strain O139 is closely related to the pandemic strain Ol of Vibrio cholerea. J Infect Dis 1994; 170:701–704
    [Google Scholar]
  22. Coelho A., Vincente A. C. P., Baptista M. A. S., Momen H., Santos F. A. R. W., Salles C. A. The distinction of pathogenic Vibrio cholerae groups using arbitrarily primed PCR fingerprints. Res Microbiol 1995; 146:671–683
    [Google Scholar]
  23. Makino S.-I., Kurazono T., Okuyama Y., Shimada T., Okada Y., Sasakawa C. Diversity of DNA sequences among Vibrio cholerae O139 Bengal detected by PCR-based DNA fingerprinting. FEMS Microbiol Lett 1995; 126:43–48
    [Google Scholar]
  24. Rivera I. G., Chowdhury M. A. R., Huq A., Jacobs D., Martins M. T., Colwell R. R. Enterobacterial repetitive intergenic consensus sequences and the PCR to generate fingerprints of genomic DNAs from Vibrio cholerae O1, O139 and non-O1 strains. Appl Environ Microbiol 1995; 61:2898–2904
    [Google Scholar]
  25. Barker A., Clark C. A., Manning P. A. Identification of VCR, a repeated sequence associated with a locus encoding a hemagglutinin in Vibro choleme O1. J Bacteriol 1994; 176:5450–5458
    [Google Scholar]
  26. Shangkuan Y. H., Lin H. C., Wang T. M. Diversity of DNA sequences among Vibrio cholerae O1 and non-Ol isolates detected by whole-cell repetitive element sequence-based polymerase chain reaction. J Appl Bacteriol 1997; 00:000–000
    [Google Scholar]
  27. Shangkuan Y. H., Show Y. S., Wang T. M. Multiplex polymerase chain reaction to detect toxigenic Vibrio cholerae and to biotype Vibrio cholerae O1. J Appl Bacteriol 1995; 79:264–273
    [Google Scholar]
  28. Akopyanz N., Bukanov N. O., Westblom T. U., Kresovich S., Berg D. E. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res 1992; 20:5137–5142
    [Google Scholar]
  29. Sharpies G. J., Lloyd R. G. A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes. Nucleic Acids Res 1990; 18:6503–6508
    [Google Scholar]
  30. Hulton C. S. J., Higgins C. F., Sharp P. M. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 1991; 5:825–834
    [Google Scholar]
  31. Liu P. Y.-F., Lau Y.-J., Hu B.-S. Analysis of clonal relationships among isolates of Shigella sonnei by different molecular typing methods. J Clin Microbiol 1995; 33:1779–1783
    [Google Scholar]
  32. Mekalanos J. J. Duplication and amplification of toxin genes in Vibrio cholerae. Cell 1983; 35:253–263
    [Google Scholar]
  33. Liesack W., Menke M. A. O. H., Stackebrandt E. Rapid generation of vector-free digoxigenin-dUTP labeled probes for nonradioactive hybridization using the polymerase chain reaction (PCR) method. Sys Appl Microbiol 1990; 13:255–256
    [Google Scholar]
  34. Weisburg W. G., Bams S. M., Pelletier D. A., Lane D. J.1 6S, ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703
    [Google Scholar]
  35. Hiraishi A. Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 1992; 15:210–213
    [Google Scholar]
  36. Famque S. M., Roy S. K., Alim A. R. M. A., Siddique A. K., Albert M. J. Molecular epidemiology of toxigenic Vibrio cholerae in Bangladesh studied by numerical analysis of rRNA gene restriction patterns. J Clin Microbiol 1995; 33:2833–2838
    [Google Scholar]
  37. Farber J. M., Addison C. J. RAPD typing for distinguishing species and strains in the genus Listeria. J Appl Bacteriol 1994; 77:242–250
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-46-11-941
Loading
/content/journal/jmm/10.1099/00222615-46-11-941
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error