1887

Abstract

has limited adverse effects on its arthropod vector, but causes severe disease in man. To model differences in host-parasite interaction, growth and protein expression were examined at temperatures reflective of host environment in the tick cell lines DALBE3 and IDE2, the human endothelial cell line ECV304, and the African green monkey kidney cell line Vero76. At low multiplicities of infection, rickettsial titres increased 10–10-fold in all cell lines after incubation for 3 days at 34°C. At higher multiplicites and with extended incubation, showed enhanced survival in tick mammalian cells. No difference in rickettsial ultrastructure or protein profiles was detected between different host cell types. Rickettsial proteins of 42, 43, 48, 75 and 100 kDa are induced in tick cells shifted from 28° to 34°C, but not in cells maintained at 28°C. This temperature response may be associated with expression of rickettsial determinants that are pathogenic to mammalian hosts.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-46-10-839
1997-10-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmm/46/10/medmicro-46-10-839.html?itemId=/content/journal/jmm/10.1099/00222615-46-10-839&mimeType=html&fmt=ahah

References

  1. Burgdorfer W. Investigation of “transovarial transmission” of Rickettsia rickettsii in the wood tick, Dermacentor andersoni. Exp Parasitol 1963; 14:152–159
    [Google Scholar]
  2. Burgdorfer W., Brinton L. P. Mechanisms of transovarial infection of spotted fever Rickettsiae in ticks. Ann NY Acad Sci 1975; 266:61–77
    [Google Scholar]
  3. Cox H. R. Cultivation of Rickettsiae of the rocky mountain spotted fever, typhus and Q fever groups in the embryonic tissues of developing chicks. Science 1941; 94:399–403
    [Google Scholar]
  4. Johnson J. W., Pedersen C. E. Plaque formation by strains of spotted fever rickettsiae in monolayer cultures of various cell types. J Clin Microbiol 1978; 7:389–391
    [Google Scholar]
  5. Anacker R. L., Philip R. N., Williams J. C., List R. H., Mann R. E. Biochemical and immunochemical analysis of Rickettsia rickettsii strains of various degrees of virulence. Infect Immun 1984; 44:559–564
    [Google Scholar]
  6. Anacker R. L., List R. H., Mann R. E., Hayes S. F., Thomas L. A. Characterization of monoclonal antibodies protecting mice against Rickettsiae rickettsii. J Infect Dis 1985; 151:1052–1060
    [Google Scholar]
  7. Anderson B. E., Regnery R. L., Carlone G. M. Sequence analysis of the 17–kilodalton-antigen gene from Rickettsia rickettsii. J Bacteriol 1987; 169:2385–2390
    [Google Scholar]
  8. Feng H. M., Kirkman C., Walker D. H. Radioimmunoprecipitation of [35S]methionine-radiolabeled proteins of Rickettsia conorii and Rickettsia rickettsii. J Infect Dis 1986; 154:717–721
    [Google Scholar]
  9. Williams J. C., Walker D. H., Peacock M. G., Stewart S. T. Humoral immune response to Rocky Mountain spotted fever in experimentally infected guinea pigs: immunoprecipitation of lactoperoxidase 125I-labeled proteins and detection of soluble antigens of Rickettsia rickettsii. Infect Immun 1986; 52:120–127
    [Google Scholar]
  10. Miller J. F., Mekalanos J. J., Falkow S. Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 1989; 243:916–922
    [Google Scholar]
  11. Mekalanos J. J. Environmental signals controlling expression of virulence determinants in bacteria. J Bacteriol 1992; 174:1–7
    [Google Scholar]
  12. Schwan T. G., Piesman J., Golde W. T., Dolan M. C., Rosa P. A. Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci USA 1995; 92:2909–2913
    [Google Scholar]
  13. Spencer R. R., Parker R. R. Rocky mountain spotted fever: infectivity of fasting and recently fed ticks. Public Health Rep 1923; 38:333–339
    [Google Scholar]
  14. Spencer R. R., Parker R. R. Rocky Mountain spotted fever: experimental studies on tick virus. Public Health Rep 1924; 39:3027–3040
    [Google Scholar]
  15. Munderloh U. G., Liu Y., Wang M., Chen C., Kurtti T. J. Establishment, maintenance and description of cell lines from the tick Ixodes scapularis. J Parasitol 1994; 80:533–543
    [Google Scholar]
  16. Munderloh U. G., Kurtti T. J. Formulation of medium for tick cell culture. Exp Appl Acarol 1989; 7:219–229
    [Google Scholar]
  17. Cory J., Yunker C. E., Ormsbee R. A., Peacock N., Meibos F. I., Tallent G. Plaque assay of rickettsiae in a mammalian cell line. Appl Microbiol 1974; 27:1157–1161
    [Google Scholar]
  18. Laemmli U. K. Cleavage of structual proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  19. Batteiger B., Newhall W. J., Jones R. B. The use of Tween 20 as a blocking agent in the immunological detection of proteins transferred to nitrocellulose membranes. J Immunol Methods 1982; 55:297–307
    [Google Scholar]
  20. Silverman D. J., Wisseman C. L., Waddell A. D., Jones M. External layers of Rickettsia prowazekii and Rickettsia rickettsii: occurrence of a slime layer. Infect Immun 1978; 22:233–246
    [Google Scholar]
  21. Hackstadt T., Messer R., Cieplak W., Peacock M. G. Evidence for proteolytic cleavage of the 120–kilodalton outer membrane protein of rickettsiae: identification of an avirulent mutant deficient in processing. Infect Immun 1992; 60:159–165
    [Google Scholar]
  22. Oaks S. C., Osterman J. Y. The influence of temperature and pH on the growth of Rickettsia conorii in irradiated mammalian cells. Acta Virol 1979; 23:67–72
    [Google Scholar]
  23. Walker D. H., Firth W. T., Edgell C. J. Human endothelial cell culture plaques induced by Rickettsia rickettsii. Infect Immun 1982; 37:301–306
    [Google Scholar]
  24. Silverman D. J. Rickettsia rickettsii-induced cellular injury of human vascular endothelium in vitro. Infect Immun 1984; 44:545–553
    [Google Scholar]
  25. Silverman D. J., Bond S. R. Infection of human vascular endothelial cells by Rickettsia rickettsii. J Infect Dis 1984; 149:201–206
    [Google Scholar]
  26. Rehacek J., Brezina R., Majerska M. Multiplication of rickettsiae in tick cells in vitro. Acta Virol 1968; 12:41–43
    [Google Scholar]
  27. Yunker C. E., Cory J., Meibos H. Tick tissue and cell culture: applications to research in medical and veterinary acarology and vector-borne disease. Acarology VI 1984; 2:1082–1088
    [Google Scholar]
  28. Heinzen R. A., Hayes S. F., Peacock M. G., Hackstadt T. Directional actin polymerization associated with spotted fever group Rickettsia infection of Vero cells. Infect Immun 1993; 61:1926–1935
    [Google Scholar]
  29. Todd W. J., Burgdorfer W., Mavros A. J. Establishement of cell cultures persistently infected with spotted fever group rickettsiae. Can J Microbiol 1982; 28:1412–1416
    [Google Scholar]
  30. Parker R. R., Spencer R. R. Rocky Mountain spotted fever: a study on the relationship between the presence of rickettsia-like organisms in tick smears and the infectiveness of the same ticks. Public Health Rep 1926; 41:461–469
    [Google Scholar]
  31. Wike D. A., Burgdorfer W. Plaque formation in tissue cultures by Rickettsia rickettsii isolated directly from whole blood and tick hemolymph. Infect Immun 1972; 6:736–738
    [Google Scholar]
  32. Hayes S. F., Burgdorfer W. Reactivtion of Rickettsia rickettsii in Dermacentor andersoni ticks: an ultrastructural analysis. Infect Immun 1982; 37:779–785
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-46-10-839
Loading
/content/journal/jmm/10.1099/00222615-46-10-839
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error