Differentiation of thermolysins and serralysins by monoclonal antibodies Free

Abstract

Two monoclonal antibodies (MAbs) to a 36-kDa extracellular metalloprotease (PSCP) from were found to react with thermolysin, elastase, alkaline protease (Apr) and LasA, protease (SMP), protease (AhP), and both the lethal factor (LF) and protective antigen (PA) of on immunoblots. The MAbs were capable of neutralising the proteolytic activity of thermolysin, elastase and PSCP but not that of Apr, SMP, and AhP. These results suggest that these MAbs may be able to differentiate between the thermolysin and serralysin family of metalloproteases on the basis of their neutralisation capability and could, therefore, be useful tools in the characterisation of new bacterial proteases.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-45-3-219
1996-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/45/3/medmicro-45-3-219.html?itemId=/content/journal/jmm/10.1099/00222615-45-3-219&mimeType=html&fmt=ahah

References

  1. Bond J. S., Butler P. E. Intracellular proteases. Annu Rev Biochem 1987; 56:333–364
    [Google Scholar]
  2. Häse C. C., Finkelstein R. A. Bacterial extracellular zinc-containing metalloproteases. Microbiol Rev 1993; 57:823–837
    [Google Scholar]
  3. Jongeneel C. V., Bouvier J., Bairoch A. A unique signature identifies a family of zinc-dependent metallopeptidases. FEBS Lett 1989; 242:211–214
    [Google Scholar]
  4. Moffat J. F., Edelstein P. H., Regula D. P., Cirillo J. D., Tompkins L. S. Effects of an isogenic Zn-metalloprotease-deficient mutant of Legionella pneumophila in a guinea-pig pneumonia model. Mol Microbiol 1994; 12:693–705
    [Google Scholar]
  5. Black W. J., Quinn F. D., Tompkins L. S. Legionella pneumophila zinc metalloprotease is structurally and functionally homologous to Pseudomonas aeruginosa elastase. J Bacteriol 1990; 172:2608–2613
    [Google Scholar]
  6. Booth B. A., Boesman-Finkelstein M., Finkelstein R. A Vibrio cholerae soluble hemagglutinin/protease is a metalloenzyme. Infect Immun 1983; 42:639–644
    [Google Scholar]
  7. Finkelstein R. A., Boesman-Finkelstein M., Holt P. Vibrio cholerae hemagglutinin/lectin/protease hydrolyzes fibronectin and ovomucin: F. M. Burnet revisited. Proc Natl Acad Sci USA 1983; 80:1092–1095
    [Google Scholar]
  8. Bever R. A., Iglewski B. H. Molecular characterization and nucleotide sequence of the Pseudomonas aeruginosa elastase structural gene. J Bacteriol 1988; 170:4309–4314
    [Google Scholar]
  9. Okuda K., Morihara K., Atsumi Y. Complete nucleotide sequence of the structural gene for alkaline protease from Pseudomonas aeruginosa IFO 3455. Infect Immun 1990; 58:4083–4088
    [Google Scholar]
  10. Duong F., Lazdunski A., Cami B., Murgier M. Sequence of a cluster of genes controlling synthesis and secretion of alkaline protease in Pseudomonas aeruginosa; relationships to other secretory pathways. Gene 1992; 121:47–54
    [Google Scholar]
  11. Britigan B. E., Hayek M. B., Doebbeling B. N., Fick R. B. Transferrin and lactoferrin undergo proteolytic cleavage in Pseudomonas aeruginosa-infected lungs of patients with cystic fibrosis. Infect Immun 1993; 61:5049–5055
    [Google Scholar]
  12. Wretlind B., Pavlovskis O. R. Pseudomonas aeruginosa elastase and its role in Pseudomonas infections. Rev Infect Dis 1979; 5: Suppl 5S998–S1004
    [Google Scholar]
  13. Häse C. C., Finkelstein R. A. Cloning and nucleotide sequence of the Vibrio cholerae hemagglutinin/protease (HA/protease) gene and construction of an HA/protease-negative strain. J Bacteriol 1991; 173:3311–3317
    [Google Scholar]
  14. Moffat J. F., Black W. J., Tompkins L. S. Further molecular characterization of the cloned Legionella pneumophila zinc metalloprotease. Infect Immun 1994; 62:751–753
    [Google Scholar]
  15. Bode W., Gomis-Rüth, F-X., Stöcker W. Astacins, serralysins, snake venom and matrix metalloproteases exhibit identical zinc-binding environments (HEXXHXXGXXH and met-tum) and topologies and should be grouped into a common family, the ‘metaincins’. FEBS letters 1993; 331:134–140
    [Google Scholar]
  16. Lylerly D., Gray L., Kreger A. Characterization of rabbit corneal damage produced by serratia keratitis and by a serratia protease. Infect Immun 1981; 33:927–932
    [Google Scholar]
  17. Lylerly D. M., Kreger A. S. Importance of serratia protease in the pathogenesis of experimental Serratia marcescens pneumonia. Infect Immun 1983; 40:113–119
    [Google Scholar]
  18. Ghigo J.-M., Wandersman C. A. fourth metalloprotease gene in Erwinia chrysanthemi. Res Microbiol 1992; 143:857–867
    [Google Scholar]
  19. Toder D. S., Ferrell S. J., Nezezon J. L., Rust L., Iglewski B. H. lasA and lasB genes of Pseudomonas aeruginosa: analysis of transcription and gene product activity. Infect Immun 1994; 62:1320–1327
    [Google Scholar]
  20. Kessler E., Safrin M., Olson J. C., Ohman D. E. Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. J Biol Chem 1993; 268:7503–7508
    [Google Scholar]
  21. Olson J. C., Ohman D. E. Efficient production and processing of elastase and LasA by Pseudomonas aeruginosa require zinc and calcium ions. J Bacteriol 1992; 174:4140–4147
    [Google Scholar]
  22. Peters J. E., Park S. J., Darzins A. Further studies on Pseudomonas aeruginosa LasA: analysis of specificity. Mol Microbiol 1992; 6:1155–1162
    [Google Scholar]
  23. Loewy A. G., Santer U. V., Wieczorek M., Blodgett J. K., Jones S. W., Cheronis J. C. Purification and characterization of a novel zinc-proteinase from cultures of Aeromonas hydrophila. J Biol Chem 1993; 268:9071–9078
    [Google Scholar]
  24. Bairoch A. The PROSITE dictionary of sites and patterns in proteins, its current status. Nucleic Acids Res 1993; 21:3097–3103
    [Google Scholar]
  25. Schiavo G., Poulain B., Rossetto O., Benfenati F., Tauc L., Montecucco C. Tetanus toxin is a zinc protein and its inhibition of neurotransmitter release and protease activity depend on zinc. EMBO J 1992; 11:3577–3583
    [Google Scholar]
  26. Schiavo G., Rossetto O., Santucci A., DasGupta B. R., Montecucco C. Botulinum neurotoxins are zinc proteins. J Biol Chem 1992; 267:23479–23483
    [Google Scholar]
  27. Schiavo G., Shone C. C., Rossetto O., Alexander F. C. G., Montecucco C. Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J Biol Chem 1993; 268:11516–11519
    [Google Scholar]
  28. Klimpel K. R., Aurora N., Leppla S. H. Anthrax toxin lethal factor contains a zinc metalloprotease consensus sequence which is required for lethal toxin activity. Mol Microbiol 1994; 13:1093–1100
    [Google Scholar]
  29. Kooi C., Cox A., Darling P., Sokol P. A. Neutralizing monoclonal antibodies to an extracellular Pseudomonas cepacia protease. Infect Immun 1994; 62:2811–2817
    [Google Scholar]
  30. McKevitt A. I., Bajaksouzian S., Klinger J. D., Woods D. E. Purification and characterization of an extracellular protease from Pseudomonas cepacia. Infect Immun 1989; 57:771–778
    [Google Scholar]
  31. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  32. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 1979; 76:4350–4354
    [Google Scholar]
  33. Rinderknecht H., Geokas M. C., Silverman P., Haverback B. J. A new ultra-sensitive method for determination of proteolytic activity. Clin Chim Acta 1968; 21:197–203
    [Google Scholar]
  34. Jiang W., Bond J. S. Families of metalloendopeptidases and their relationships. FEBS Lett 1992; 312:110–114
    [Google Scholar]
  35. Steward M. W., Lew A. M. The importance of antibody affinity in the performance of immunoassays for antibody. J Immunol Methods 1985; 78:173–190
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-45-3-219
Loading
/content/journal/jmm/10.1099/00222615-45-3-219
Loading

Data & Media loading...

Most cited Most Cited RSS feed