1887

Abstract

The diversity in virulence of different strains was studied in an experimental murine model of invasive pulmonary aspergillosis (IPA) and the results were correlated with possession of a putative molecular marker of virulence. Seven strains from different patients with non-invasive or invasive aspergillosis and four environmental strains were typed by PCR with specific primers and scored as positive or negative, according to whether or not a 0.95-kb DNA fragment was amplified. Immunosuppressed mice were inoculated intranasally with conidia from these different strains. The mortality curves revealed differences in virulence between the strains. The environmental strains produced a weaker infection than the strains from patients and the 0.95-kb-positive patient strains caused significantly higher mortality rates in mice than the 0.95-kb-negative patient strains. These findings support the hypothesis that certain isolates of are more virulent than others and that their virulence appears to be associated with the 0.95-kb molecular marker.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-45-3-186
1996-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/45/3/medmicro-45-3-186.html?itemId=/content/journal/jmm/10.1099/00222615-45-3-186&mimeType=html&fmt=ahah

References

  1. Kolattukudy P. E., Lee J. D., Rogers L. M. Evidence for possible involvement of an elastolytic serine protease in aspergillosis. Infect Immun 1993; 61:2357–2368
    [Google Scholar]
  2. Monod M., Togni G., Rahalison L., Frenk E. Isolation and characterisation of an extracellular alkaline protease of Aspergillus fumigatus. J Med Microbiol 1991; 35:23–28
    [Google Scholar]
  3. Monod M., Paris S., Sanglard D., Jaton-Ogay K., Bille J., Latge J. P. Isolation and characterization of a secreted metalloprotease of Aspergillus fumigatus. Infect Immun 1993; 61:4099–4104
    [Google Scholar]
  4. Markaryan A., Morozova I., Yu H., Kolattukudy P. E. Purification and characterization of an elastolytic metalloprotease from Aspergillus fumigatus and immunoelectron microscopic evidence of secretion of this enzyme by the fungus invading the murine lung. Infect Immun 1994; 62:2149–2157
    [Google Scholar]
  5. Monod M., Paris S., Sarfati J., Jaton-Ogay K., Ave P., Latgé J.-P. Virulence of alkaline protease-deficient mutants of Aspergillus fumigatus. FEMS Microbiol Lett 1993; 106:39–46
    [Google Scholar]
  6. Tang C. M., Cohen J., Krausz T., Van Noorden S., Holden D. W. The alkaline protease of Aspergillus fumigatus is not a virulence determinant in two murine models of invasive pulmonary aspergillosis. Infect Immun 1993; 61:1650–1656
    [Google Scholar]
  7. Latgé J. P., Paris S., Sarfati J., Debeaupuis J. P., Monod M. Exoantigens of Aspergillus fumigatus: serodiagnosis and virulence. In Powell K. A., Renwick A., Peberdy J. F. (eds) The genus of Aspergillus: from taxonomy and genetics to industrial application New York: Plenum Press; 1994
    [Google Scholar]
  8. Jaton-Ogay K., Paris S., Huerre M. Cloning and disruption of the gene encoding an extracellular metalloprotease of Aspergillus fumigatus. Mol Microbiol 1994; 14:917–928
    [Google Scholar]
  9. Smith J. M., Davies J. E., Holden D. W. Construction and pathogenicity of Aspergillus fumigatus mutants that do not produce the ribotoxin restrictocin. Mol Microbiol 1993; 9:1071–1077
    [Google Scholar]
  10. Smith J. M., Tang C. M., Van Noorden S., Holden D. W. Virulence of Aspergillus fumigatus double mutants lacking restrictocin and an alkaline protease in a low-dose model of invasive pulmonary aspergillosis. Infect Immun 1994; 62:5247–5254
    [Google Scholar]
  11. Sutton P., Newcombe N. R., Waring P., Miillbacher A. In vivo immunosuppressive activity gliotoxin, a metabolite produced by human pathogenic fungi. Infect Immun 1994; 62:1192–1198
    [Google Scholar]
  12. Aufauvre-Brown A., Cohen J., Holden D. W. Use of randomly amplified polymorphic DNA markers to distinguish isolates of Aspergillus fumigatus. J Clin Microbiol 1992; 30:2991–2993
    [Google Scholar]
  13. Loudon K. W., Bumie J. P., Coke A. P., Matthews R. C. Application of polymerase chain reaction to fingerprinting Aspergillus fumigatus by random amplification polymorphic DNA. J Clin Microbiol 1993; 31:1117–1121
    [Google Scholar]
  14. Brenier M. P., Lebeau B., Mondon P. Epidemiology of aspergillosis: origin of contamination by molecular genome typing. Trends in invasive fungal infections 3 Brussels (Belgium): September 7–9 1995
    [Google Scholar]
  15. Girardin H., Sarfati J., Traore F., Dupouy-Camet J., Derouin F., Latge J. P. Molecular epidemiology of nosocomial invasive aspergillosis. J Clin Microbiol 1994; 32:684–690
    [Google Scholar]
  16. Girardin H., Sarfati J., Kobayashi H., Bouchara J. P., Latge J. P. Use of DNA moderately repetitive sequence to type Aspergillus fumigatus isolates from aspergilloma patients. J Infect Dis 1994; 169:683–685
    [Google Scholar]
  17. Tang C. M., Cohen J., Rees A. J., Holden D. W. Molecular epidemiological study of invasive pulmonary aspergillosis in renal transplantation unit. Eur J Clin Microbiol Infect Dis 1994; 13:318–321
    [Google Scholar]
  18. Mondon P., Thélu J., Lebeau B., Ambroise-Thomas P., Grillot R. Virulence of Aspergillus fumigatus strains investigated by random amplified polymorphic DNA analysis. J Med Microbiol 1995; 42:299–303
    [Google Scholar]
  19. Paris S., Monod M., Diaquin M. A transformant of Aspergillus fumigatus deficient in the antigenic cytotoxin ASPF1. FEMS Microbiol Lett 1993; 111:31–36
    [Google Scholar]
  20. Thau N., Monod, M, Crestani B. Rodletless mutants of Aspergillus fumigatus. Infect Immun 1994; 62:4380–4388
    [Google Scholar]
  21. Bodey G. P., Vartivarian S. Aspergillosis. Eur J Microbiol Infect Dis 1989; 8:413–137
    [Google Scholar]
  22. Dixon D. M., Polak A., Walsh T. J. Fungus dose-dependent primary pulmonary aspergillosis in immunosuppressed mice. Infect Immun 1989; 57:1452–1456
    [Google Scholar]
  23. Kaplan E. L., Meier P. Nonparametric estimation from incomplete observations. JASA 1958; 53:457–481
    [Google Scholar]
  24. Woolson R. F. Statistical methods for the analysis of biomedical data. New York: John Wiley and Sons; 1987453–464
    [Google Scholar]
  25. Ng T. T. C., Robson G. D., Denning D. W. Hydrocortisone-enhanced growth of Aspergillus spp: implications for pathogenesis. Microbiology 1994; 140:2475–2479
    [Google Scholar]
  26. Bidochka M. J., Walsh S. R. A., Ramos M. E., Leger S. T. J., Silver J. C., Roberts D. W. Pathotypes in the Entomophaga grylli species complex of grasshopper pathogens differentiated with random amplification of polymorphic DNA and cloned-DNA probes. Appl Environ Microbiol 1995; 61:556–560
    [Google Scholar]
  27. Goodwin P. H., Annis S. L. Rapid identification of genetic variation and pathotype of Leptosphaeria maculans by random amplified polymorphic DNA assay. Appl Environ Microbiol 1991; 57:2482–2486
    [Google Scholar]
  28. Crowhurst R. N., Hawthorne B. T., Rikkerink E. H. A., Templeton M. D. Differentiation of Fusarium solani f. sp. cucurbitae races 1 and 2 by random amplification of polymorphic DNA. Curr Genet 1991; 20:391–396
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-45-3-186
Loading
/content/journal/jmm/10.1099/00222615-45-3-186
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error