1887

Abstract

A glycosaminoglycan (GAG) depolymerase that acts on chondroitin sulphate A (CS-A), chondroitin sulphate C (CS-C) and hyaluronic acid (HA) was purified to apparent homogeneity from a culture of , strain UNS 35, grown in minimal medium supplemented with CS-A as the sole carbon source. The enzyme was purified by ammonium sulphate precipitation followed by serial chromatography on DEAE Trisacryl M, CM Trisacryl M and heparin-agarose. SDS-PAGE analysis of the purified enzyme yielded a single band with a mol. wt of 83 000. The purified GAG depolymerase was unusual in its substrate specificity. The enzyme was initially regarded as a CS depolymerase because of its induction by CS-A. However, the GAG depolymerase exhibited greatest activity against HA, whereas the degradation rates of CS-A and CS-C were 8% and 2%, respectively, of the rate with HA. On this basis the enzyme could be classified as a hyaluronidase rather than a CS depolymerase. The pH optimum was around neutrality and the enzyme was unusual in having a high pl of approximately 9.3.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-44-5-381
1996-05-01
2022-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/44/5/medmicro-44-5-381.html?itemId=/content/journal/jmm/10.1099/00222615-44-5-381&mimeType=html&fmt=ahah

References

  1. Parker M. T., Ball L. C. Streptococci and aerococci associated with systemic infection in man. J Med Microbiol 1976; 9:275–302
    [Google Scholar]
  2. Ball L. C., Parker M. T. The cultural and biochemical characters of Streptococcus milleri strains ioslated from human sources. J Hyg 1979; 82:63–78
    [Google Scholar]
  3. Poole P. M., Wilson G. Occurrence and cultural features of Streptococcus milleri in various body sites. J Clin Pathol 1979; 32:764–768
    [Google Scholar]
  4. Shlaes D. M., Lerner P. I., Wolinsky E., Gopalakrishna K. V. Infections due to Lancefield group F and related streptococci (S. milleri S. anginosus) . Medicine 1981; 60:197–207
    [Google Scholar]
  5. Murray H. W., Gross K. C., Masur H., Roberts R. B. Serious infections caused by Streptococcus milleri . Am J Med 1978; 64:759–764
    [Google Scholar]
  6. Anonymous Streptococcus milleri, pathogen in various guises. Lancet 1985; 2:1403–1404
    [Google Scholar]
  7. Ruoff K. L. Streptococcus anginosus (“Streptococcus milleri”): the unrecognized pathogen . Clin Microbiol Rev 1988; 1:102–108
    [Google Scholar]
  8. Piscitelli S. C., Shwed J., Schreckenberger P., Danziger L. H. Streptococcus milleri group: renewed interest in an elusive pathogen. Eur J Clin Microbiol Infect Dis 1992; 11:491–498
    [Google Scholar]
  9. Whiley R. A., Beighton D. Emended descriptions and recognition of Streptococcus constellatus, Streptococcus intermedius, and Streptococcus anginosus as distinct species. Int J Syst Bacterial 1991; 41:1–5
    [Google Scholar]
  10. Unsworth P. F. Hyaluronidase production in Streptococcus milleri in relation to infection. J Clin Pathol 1989; 42:506–510
    [Google Scholar]
  11. Whiley R. A., Fraser H., Hardie J. M., Beighton D. Phenotypic differentiation of Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus strains within the “ Streptococcus milleri group”. J Clin Microbiol 1990; 28:1497–1501
    [Google Scholar]
  12. Whiley R. A., Beighton D., Winstanley T. G., Fraser H. Y., Hardie J. M. Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus (the Streptococcus milleri group): association with different body sites and clinical infections. J Clin Microbiol 1992; 30:243–244
    [Google Scholar]
  13. Beighton D., Hardie J. M., Whiley R. A. A scheme for the identification of viridans streptococci. J Med Microbiol 1991; 35:367–372
    [Google Scholar]
  14. Kjellen L., Lindahl U. Proteoglycans: structures and inter-actions. Annu Rev Biochem 1991; 60:443–475
    [Google Scholar]
  15. Lewy G. A., McAllan A. The N-acetylation and estimation of hexosamines. Biochem J 1959; 73:127–132
    [Google Scholar]
  16. Homer K. A., Patel R., Beighton D. Effects of N-acetylglucosamine on carbohydrate fermentation by Streptococcus mutans NCTC 10449 and Streptococcus sobrinus SL-1. Infect Immun 1993; 61:295–302
    [Google Scholar]
  17. Saito H., Yamagata T., Suzuki S. Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates. J Biol Chem 1968; 243:1536–1542
    [Google Scholar]
  18. Yamagata T., Saito H., Habuchi O., Suzuki S. Purification and properties of bacterial chondroitinases and chondrosulphatases. J Biol Chem 1968; 243:1523–1535
    [Google Scholar]
  19. Russell R. R. B. Comparison of oral Streptococcus mutans AHT with strains of serotypes a and g by biochemical and electrophoretic methods. Arch Oral Biol 1979; 24:617–619
    [Google Scholar]
  20. Linn S., Chan T., Lipeski L., Salyers A. A. Isolation and characterization of two chondroitin lyases from Bacteroides thetaiotaomicron . J Bacteriol 1983; 156:859–866
    [Google Scholar]
  21. Slayne M. A., Aldred M. J., Wade W. G. A rapid, semi-automated SDS-PAGE identification system for oral anaerobic bacteria. J Appl Bacteriol 1990; 68:391–395
    [Google Scholar]
  22. Linker A. Bacterial mucopolysaccharidases (mucopolysaccharide lyases). Methods Enzymol 1966; 8:650–654
    [Google Scholar]
  23. Tipler L. S., Embery G. Glycosaminoglycan-depolymerising enzymes produced by anaerobic bacteria isolated from the human mouth. Arch Oral Biol 1985; 30:391–396
    [Google Scholar]
  24. Michelacci Y. M., Dietrich C. P. Chondroitinase C from Flavobacterium heparinum . J Biol Chem 1976; 251:1154–1158
    [Google Scholar]
  25. Michelacci Y. M., Dietrich C. P. Isolation and partial characterization of an induced chondroitinase B from Flavo-bacterium heparinum . Biochem Biophys Res Commun 1974; 56:973–980
    [Google Scholar]
  26. Hibi E., Osano E., Fujii Y., Moriyama T. Chondroitinase C activity of Streptococcus intermedius . FEMS Microbiol Lett 1989; 57:121–124
    [Google Scholar]
  27. Gibian H., Enzymes degrading glycosaminoglycans. In: Balazs E. A., Jeanloz R. (eds) The amino sugars vol 2B Metabolism and interactions New York: Academic Press; 1966181–200
    [Google Scholar]
  28. Hill J. Purification and properties of streptococcal hyaluronate lyase. Infect Immun 1976; 14:726–735
    [Google Scholar]
  29. Hamai A., Morikawa K., Horie K., Tokuyasu K. Purification and characterization of hyaluronidase from Streptococcus dysgalactiae . Agric Biol Chem 1989; 53:2163–2168
    [Google Scholar]
  30. Sting R., Schaufuss P., Blobel H. Isolation and characterization of hyaluronidases from Streptococcus dysgalactiae S. zooepidemicus and S. equi . Int J Med Microbiol 1990; 272:276–282
    [Google Scholar]
  31. Linker A., Meyer K., Hoffman P. The production of unsaturated uronides by bacterial hyaluronidases. J Biol Chem 1956; 219:13–25
    [Google Scholar]
  32. Abramson C. Staphylococcal hyaluronidase isoenzyme profiles related to Staphylococcal disease. Ann NY Acad Sci 1974; 236:495–507
    [Google Scholar]
  33. Kennedy J. F. Enzymic susceptibilities of glycosaminoglycans and proteoglycans. In Proteoglycans—biological and chemical aspects in human life (Studies in organic chemistry 2) Amsterdam: Elsevier Scientific Publishing Company; 1979195–223
    [Google Scholar]
  34. Brunish R., Mozersky S. M. The characterization of hyaluronidase isolated from Escherichia freundii . J Biol Chem 1958; 231:291–301
    [Google Scholar]
  35. Tam Y.-C., Chan E. C. S. Purification and characterization of hyaluronidase from oral Peptostreptococcus species. Infect Immun 1985; 47:508–513
    [Google Scholar]
  36. Homer K. A., Denbow L., Whiley R. A., Beighton D. Chondroitin sulfate depolymerase and hyaluronidase activities of viridans streptococci determined by a sensitive spectrophotometric assay. J Clin Microbiol 1993; 31:1648–1651
    [Google Scholar]
  37. Homer K. A., Grootveld M. C., Hawkes J., Naughton D. P., Beighton D. Degradation of hyaluronate by Streptococcus intermedius strain UNS 35. J Med Microbiol 1994; 41:414–422
    [Google Scholar]
  38. Rodén L. Structure and metabolism of connective tissue proteoglycans. In Lennarz W. J. (ed) The biochemistry of glycoproteins and proteoglycans New York: Plenum Press; 1980267–371
    [Google Scholar]
  39. Shain H., Homer K. A., Beighton D. Degradation and utilisation of chondroitin sulphate by Streptococcus intermedius . J Med Microbiol 1996; 44:372–380
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-44-5-381
Loading
/content/journal/jmm/10.1099/00222615-44-5-381
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error