Transferrin receptors of : promising candidates for a broadly cross-protective vaccine Free

Abstract

Summary

Production of a meningococcal vaccine capable of generating long-lasting immunity in all age groups is still a high priority worldwide. Iron-regulated outer-membrane proteins have attracted considerable attention in recent years and it has become increasingly evident that the meningococcal transferrin-binding proteins, TBP1 and TBP2, have characteristics compatible with a safe and broadly cross-reactive vaccine candidate. Both TBPs are surface-exposed and immunogenic in man and animals, and antibodies to their native structure are bactericidal to homologous and many heterologous strains. These include strains from various serogroups, serotypes and serosubtypes, with no obvious correlation between bactericidal activity and the identity of the strains or the molecular mass of the heterogeneous TBP2 molecule. A meningococcal vaccine based on, or enriched with, undenatured TBPs from one or more strains, in combination with conventional polysaccharide-based vaccines, might increase the spectrum of strains against which protection can be achieved to include serogroup B strains. In this review, the structure-function and immunological properties of TBP1 and TBP2 are discussed.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-44-4-237
1996-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/44/4/medmicro-44-4-237.html?itemId=/content/journal/jmm/10.1099/00222615-44-4-237&mimeType=html&fmt=ahah

References

  1. Ala’Aldeen D. A. A., Griffiths E. Vaccines against meningococcal diseases. In Ala’Aldeen D. A. A., Hormaeche C. E. (eds) Molecular and clinical aspects of bacterial vaccine development Chichester: John Wiley and Sons; 19951–39
    [Google Scholar]
  2. Jones D. M., Kaczmarski E. B. Meningococcal infections in England and Wales: 1992. CDR Rev 1993; 3:R129–131
    [Google Scholar]
  3. Jones D. M., Kaczmarski E. B. Meningococcal infections in England and Wales: 1993. CDR Rev 1994; 4:R97–R100
    [Google Scholar]
  4. Bullen J. J., Griffiths E. Iron and infection: molecular, physiological, and clinical aspects. Chichester, England: John Wiley and Sons; 1987
    [Google Scholar]
  5. Schryvers A. B., Morris L. J. Identification and characterization of the transferrin receptor from Neisseria meningitidis. Mol Microbiol 1988; 2:281–288
    [Google Scholar]
  6. Ala’Aldeen D. A. A., Stevenson P., Griffiths E. Immune responses in humans and animals to meningococcal transferrinbinding proteins: implications for vaccine design. Infect Immun 1994; 62:2984–2900
    [Google Scholar]
  7. Schryvers A. B., Morris L. J. Identification and characterization of the human lactoferrin-binding protein from Neisseria meningitidis. Infect Immun 1988; 56:1144–1149
    [Google Scholar]
  8. Chen C. Y., Berish S. A., Morse S. A., Mietzner T. A. The ferric iron-binding protein of pathogenic Neisseria spp. functions as a periplasmic transport protein in iron acquisition from human transferrin. Mol Microbiol 1993; 10:311–318
    [Google Scholar]
  9. Lewis L. A., Dyer D. W. Identification of an iron-regulated outer membrane protein of Neisseria meningitidis involved in the utilization of hemoglobin complexed to haptoglobin. J Bacteriol 1995; 177:1299–1306
    [Google Scholar]
  10. Thompson S. A., Sparling P. F. The RTX cytotoxin-related FrpA protein of Neisseria meningitidis is escreted extracellularly by meningococci and by Hly BD+ Escherichia coli. Infect Immun 1993; 61:2906–2911
    [Google Scholar]
  11. Thompson S. A., Wang L. L., West A., Sparling P. F. Neisseria meningitidis produces iron-regulated proteins related to the RTX family of exoproteins. J Bacteriol 1993; 175:811–818
    [Google Scholar]
  12. Ala’Aldeen D. A. A., Wall R. A., Borriello S. P. Immunogenicity and cross-reactivity of the 70-Kda iron-regulated protein of Neisseria meningitidis in man and animals. J Med Microbiol 1990; 32:275–281
    [Google Scholar]
  13. Ala’Aldeen D. A. A., Davies H. A., Borriello S. P. Vaccine potential of meningococcal FrpB: studies on surface exposure and functional attributes of common epitopes. Vaccine 1994; 12:535–541
    [Google Scholar]
  14. Schryvers A. B., Gonzalez G. C. Comparison of the abilities of different protein sources of iron to enhance Neisseria meningitidis infection in mice. Infect Immun 1989; 57:2425–2429
    [Google Scholar]
  15. Ala’Aldeen D. A. A., Powell N. B. L., Wall R. A., Borriello S. P. Localization of the meningococcal receptors for human transferrin. Infect Immun 1993; 61:751–759
    [Google Scholar]
  16. Tsai J., Dyer D. W., Sparling P. F. Loss of transferrin receptor activity in Neisseria meningitidis correlates with inability to use transferrin as an iron source. Infect Immun 1988; 56:3132–3138
    [Google Scholar]
  17. Lissolo L., Maitre-Wilmotte C., Dumas P., Mignon M., Danve B., Quentin-Millet M.-J. Evaluation of transferrin-binding protein 2 within the transferrin-binding complex as a potential antigen for future meningococcal vaccines. Infect Immun 1995; 63:884–890
    [Google Scholar]
  18. Rokbi B., Mazarin V., Maitre-Wilmotte G., Quentin-Millet M. J. Identification of two major families of transferrin receptors among Neisseria meningitidis strains based on antigenic and genomic features. FEMS Microbiol Lett 1993; 110:51–57
    [Google Scholar]
  19. Ala’Aldeen D. A., Davies H. A., Wall R. A., Borriello S. P. The 70 kilodalton iron regulated protein of Neisseria meningitidis is not the human transferrin receptor. FEMS Microbiol Lett 1990; 69:37–42
    [Google Scholar]
  20. Wilton J., Ala’Aldeen D., Palmer H. M., Borriello S. P. Cloning and partial sequence of transferrin-binding protein 2 of Neisseria meningitidis using a novel method: twin N-terminal PCR. FEMS Microbiol Lett 1993; 107:59–66
    [Google Scholar]
  21. Legrain M., Mazarin V., Irwin S. W. Cloning and characterization of Neisseria meningitidis genes encoding the transferrin-binding proteins Tbp 1 and Tbp 2. Gene 1993; 130:73–80
    [Google Scholar]
  22. Palmer H. M., Powell N. B. L., Ala’Aldeen D. A., Wilton J., Borriello S. P. Neisseria meningitidis transferrin-binding protein 1 expressed in Escherichia coli is surface exposed and binds human transferrin. FEMS Microbiol Lett 1993; 110:139–146
    [Google Scholar]
  23. Quentin-Millet M.-J., Lissolo L., Legrain M. Transferrin-binding proteins of Neisseria meningitidis. In Evans J. S., Susan E. Y., Martin C. J. M., Feavers I. M. (eds) Neisseria 94 Potters Bar: UK, NIBSC; 1994137
    [Google Scholar]
  24. Ala’Aldeen D. A. A., Borriello S. P. The meningococcal transferrinbinding proteins 1 and 2 are both surface exposed and generate bactericidal antibodies capable of killing homologous and heterologous strains. Vaccine (in press)
    [Google Scholar]
  25. Alcantara J., Yu R. H., Schryvers A. B. The region of human transferrin involved in binding to bacterial transferrin receptors is localized in the C-lobe. Mol Microbiol 1993; 8:1135–1143
    [Google Scholar]
  26. Kabani A., Button L., Schryvers A. B. Identification of the domains of human transferrin involved in binding to transferrin receptors of human pathogens by the use of chimeric recombinant transferrin expressed in a baculovirun expression system. In Evans J. S., Susan E. Y., Martin C. J. M., Feavers I. M. (eds) Neisseria 94 Potters Bar, UK: NIBSC; 1994159–160
    [Google Scholar]
  27. Gorringe A. R., Irons L. I., Aisen P., Zak O., Robinson A. Purification of Neisseria meningitidis transferrin binding proteins and characterisation by epitope mapping and iron release studies. In Evans J. S., Susan E. Y., Martin C. J. M., Feavers I. M. (eds) Neisseria 94 Potters Bar, UK: NIBSC; 1994; 140142
    [Google Scholar]
  28. Irwin S. W., Averil N., Cheng C. Y., Schryvers A. B. Preparation and analysis of isogenic mutants in the transferrin receptor protein genes, tbpA and tbpB, from Neisseria meningitidis. Mol Microbiol 1993; 8:1125–1133
    [Google Scholar]
  29. Powell N. B. L., Ala’Aldeen D. A. A., Schryvers A. B., Borriello S. P. Electron microscopic localisation of iron-regulated proteins in N. meningitidis with particular reference to the lactoferrin and transferrin receptors. In Evans J. S., Susan E. Y., Martin C. J. M., Feavers I. M. (eds) Neisseria 94 Potters Bar, UK: NIBSC; 1994150
    [Google Scholar]
  30. Ferreirόs C. M., Ferron L., Criado M. T. In vivo human immune response to transferrin-binding protein 2 and other iron-regulated proteins of Neisseria meningitidis. FEMS Immunol Med Microbiol 1994; 8:63–68
    [Google Scholar]
  31. Griffiths E., Stevenson P., Byfield P. Antigenic relationships of transferrin-binding proteins from Neisseria meningitidis N. gonorrhoeae and Haemophilus influenzae: crossreactivity of antibodies to NH2-terminal peptides. FEMS Microbiol Lett 1993; 109:85–92
    [Google Scholar]
  32. Comelissen C. N., Sparling P. F. Iron-piracy: acquisition of transferrin-bound iron by bacterial pathogens. Mol Microbiol 1994; 14:843–850
    [Google Scholar]
  33. Ala’Aldeen D. A. A., Davies H. A., Wall R. A., Borriello S. P. Interaction between iron regulated outer membrane proteins of Neisseria meningitidis and human transferrin binding activity. In Achtman M., Kohl P., Marchal C., Morelli G., Seiler A., Thiesen B. (eds) Neisseria 1990 Berlin: Walter de Gruyter; 1991415–418
    [Google Scholar]
  34. Stevenson P., Williams P., Griffiths E. Common antigenic domains in transferrin-binding protein 2 of Neisseria meningitidis, Neisseria gonorrhoeae, and Haemophilus influenzae type b. Infect Immun 1992; 60:2391–2396
    [Google Scholar]
  35. Gerlach G. F., Klashinsky S., Anderson C., Potter A. A., Willson P. J. Characterization of two genes encoding distinct transferrin-binding proteins in different Actinobacillus pleuropneumoniae isolates. Infect Immun 1992; 60:3253–3261
    [Google Scholar]
  36. Frasch C. E. Immunisation against Neisseria meningitidis. In Easmon C. S. F., Jeljaszewics J. (eds) Medical microbiology London: Academic Press; 1983115–144
    [Google Scholar]
  37. Danve B., Lissolo L., Mignon M. Transferrin-binding proteins isolated from Neisseria meningitidis elicit protective and bactericidal antibodies in laboratory animals. Vaccine 1993; 11:1214–1220
    [Google Scholar]
  38. Maitre-Wilmotte C., Fourrichon L., Legrain M. Mapping monoclonal antibodies directed against meningococcal transferrin-binding protein 2. In Evans J. S., Susan E. Y., Martin C. J. M., Feavers I. M. (eds) Neisseria 94 Potters Bar, UK: NIBSC; 1994169
    [Google Scholar]
  39. Bishop K., Ala’Aldeen D. A. A., Powell N. B. L., Gorringe A. R., Borriello S. P. Detection of linear and conformational epitopes on the TBP1 component of the meningococcal transferrin receptors, using monoclonal antibodies. J Med Microbiol 1995; 42:148
    [Google Scholar]
  40. Ala’Aldeen D. A. A., Powell N. B. L., Borriello S. P. Role of antibodies raised during infection in blocking meningococcal transferrin receptors. In Conde G. C. J., Morse S., Rice P., Sparling F., Calderon E. (eds) Pathobiology and immunobiology of Neisseriaceae Cuernavaca, Mexico: Publications office of the Instituto Nacional de Salud Publica; 1994359–362
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-44-4-237
Loading

Most cited Most Cited RSS feed