1887

Abstract

The spread of among cystic fibrosis (CF) patients in the UK prompted an investigation into whether an epidemic strain was responsible. A total of 366 isolates from 178 CF patients in 17 centres was examined by ribotyping and pulsed-field gel electrophoresis (PFGE). Associations were also sought between antibiotic resistance and strain type. More than 50 ribotype patterns were found but one, termed ribotype 1, was identified from 68 patients in eight centres. One centre had a single patient with this type while, in others, most or all patients harboured this organism. Small clusters of apparent cross-colonisation within centres were also evident for some other ribotypes. PFGE confirmed that ribotype 1 isolates were genetically similar. Ribotype 1 isolates were not markedly more resistant to antimicrobial agents than were other isolates, and the MICs of individual antibiotics were no more tightly clustered for ribotype 1 isolates than for others. Most isolates were resistant to ciprofloxacin, amikacin, gentamicin, tobramycin, carbenicillin, cefuroxime, cefotaxime, imipenem, biapenem, chloramphenicol, tetracycline, trimethoprim and sulphamethoxazole, but ⩾ 77% were susceptible to ceftazidime, piperacillin, piperacillin/tazobactam and meropenem. We conclude that numerous strains of colonise CF patients in the UK and Ireland but that one epidemic strain has spread in at least eight centres. Isolates of this strain appear homogeneous in total genomic profile but very variable in antibiotic susceptibility.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-44-3-203
1996-03-01
2022-07-05
Loading full text...

Full text loading...

/deliver/fulltext/jmm/44/3/medmicro-44-3-203.html?itemId=/content/journal/jmm/10.1099/00222615-44-3-203&mimeType=html&fmt=ahah

References

  1. Yabuuchi E., Kosako Y., Oyaizu H. Proposal of Burkholderia gen.nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 1992; 36:1251–1275
    [Google Scholar]
  2. Burkholder W. H. Sour skin: a bacterial rot of onion bulbs. Phytopathol 1950; 40:115–117
    [Google Scholar]
  3. Martone W. J., Tablan O. C., Jarvis W. R. The epidemiology of nosocomial epidemic Pseudomonas cepacia infections. Eur J Epidemiol 1987; 3:222–232
    [Google Scholar]
  4. Isles A., Maclusky I., Corey M. Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr 1984; 104:206–210
    [Google Scholar]
  5. Thomassen M. J., Demko C. A., Klinger J. D., Stem R. C. Pseudomonas cepacia colonization among patients with cystic fibrosis. A new opportunist. Am Rev Respir Dis 1985; 131:791–796
    [Google Scholar]
  6. Gladman G., Connor P. J., Williams R. F., David T. J. Controlled study of Pseudomonas cepacia and Pseudomonas maltophilia in cystic fibrosis. Arch Dis Child 1992; 67:192–195
    [Google Scholar]
  7. Walters S., Smith E. G. Pseudomonas cepacia in cystic fibrosis: transmissibility and its implications. Lancet 1993; 342:3–4
    [Google Scholar]
  8. Nelson J. W., Doherty C. J., Brown P. H., Greening A. P., Kaufinann M. E., Govan J. R. W. Pseudomonas cepacia in inpatients with cy stic fibrosis. Lancet 1991; 338:1525
    [Google Scholar]
  9. Millar-Jones L., Pauli A., Saunders Z., Goodchild M. C. Transmission of Pseudomonas cepacia among cystic fibrosis patients. Lancet 1992; 340:491
    [Google Scholar]
  10. Govan J. R. W., Brown P. H., Maddison J. Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet 1993; 342:15–19
    [Google Scholar]
  11. Corkill J. E., Sisson P. R., Smyth A. Application of pyrolysis mass spectroscopy and SDS-PAGE in the study of the epidemiology of Pseudomonas cepacia in cystic fibrosis. J Med Microbiol 1994; 41:106–111
    [Google Scholar]
  12. LiPuma J. J., Mortensen J. E., Dasen S. E. Ribotype analysis of Pseudomonas cepacia from cystic fibrosis treatment centers. J Pediatr 1988; 113:859–863
    [Google Scholar]
  13. Anderson D. J., Kuhns J. S., Vasil M. L., Gerding D. N., Janoff E. N. DNA fingerprinting by pulsed field electrophoresis and ribotyping to distinguish Pseudomonas cepacia isolates from a nosocomial outbreak. J Clin Microbiol 1991; 29:648–649
    [Google Scholar]
  14. Barrow G. I., Feltham R. K. A. (eds) Cowan and Steel’s Manual for the identification of medical bacteria. 3rd edn Cambridge: Cambridge University Press; 199330–31
    [Google Scholar]
  15. Pitcher D. G., Saunders N. A., Owen R. J. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989; 8:151–156
    [Google Scholar]
  16. Garaizar J., Kaufinann M. E., Pitt T. L. Comparison of ribotyping with conventional methods for the type identification of Enterobacter cloacae . J Clin Microbiol 1991; 29:1303–1307
    [Google Scholar]
  17. Grothues D., Koopmann U., von der Hardt H., Tümmler B. Genome fingerprinting of Pseudomonas aeruginosa indicates colonization of cystic fibrosis siblings with closely related strains. J Clin Microbiol 1988; 26:1973–1977
    [Google Scholar]
  18. Dice L. R. Measures of the amount of ecologic association between species. Ecology 1945; 26:297–302
    [Google Scholar]
  19. Donnelly J. P. Limitations of box-plots in summarizing MIC data. J Antimicrob Chemother 1994; 33:1251
    [Google Scholar]
  20. Shannon K. Limitations of box-plots in summarizing MIC data: reply. J Antimicrob Chemother 1994; 33:1252
    [Google Scholar]
  21. LiPuma J., Dasen S. E., Neilson D. W., Stem R. C., Stull T. L. Person-to-person transmission of Pseudomonas cepacia between patients with cystic fibrosis. Lancet 1990; 336:1094–1096
    [Google Scholar]
  22. Steinbach S., Sun L., Jiang R. Z. Transmissibility of Pseudomonas cepacia infection in clinic patients and lung-transplant recipients with cystic fibrosis. N Engl J Med 1994; 331:981–987
    [Google Scholar]
  23. Johnson W. M., Tyler S. D., Rozee K. R. Linkage analysis of geographic and clinical clusters in Pseudomonas cepacia infections by multilocus enzyme electrophoresis and ribotyping. J Clin Microbiol 1994; 32:924–930
    [Google Scholar]
  24. Smith D. L., Gumery L. B., Smith E. G., Stableforth D. E., Kaufinann M. E., Pitt T. L. Epidemic of Pseudomonas cepacia in an adult cystic fibrosis: evidence of person-to-person transmission. J Clin Microbiol 1993; 31:3017–3022
    [Google Scholar]
  25. Simpson I. N., Finlay J., Winstanley D. J. Multi-resistance isolates possessing characteristics of both Burkholderia (Pseudomonas) cepacia and Burkholderia gladioli from patients with cystic fibrosis. J Antimicrob Chemother 1994; 34:353–361
    [Google Scholar]
  26. Nelson J. W., Butler S. L., Krieg D., Govan J. R. W. Virulence factors of Burkholderia cepacia . FEMS Immunol Med Microbiol 1994; 8:89–98
    [Google Scholar]
  27. Butler S. L., Nelson J. W., Govan J. R. W. Cell surface characteristics of Pseudomonas cepacia isolates from patients with cystic fibrosis. XI International CF Congress, Dublin 1992 Abstract TP8
    [Google Scholar]
  28. Scordilis G. L., Ree H., Lessie T. G. Identification of transposable elements which activate gene expression in Pseudomonas cepacia . J Bacteriol 1987; 169:8–13
    [Google Scholar]
  29. Yohalem D. S., Lorbeer J. W. Multilocus isoenzyme diversity among strains of Pseudomonas cepacia isolated from decayed onions, soils and clinical sources. System Appl Microbiol 1994; 17:116–124
    [Google Scholar]
  30. LiPuma J. J., Fisher M. C., Dasen S. E., Mortensen J. E., Stull T. L. Ribotype stability of serial pulmonary isolates of Pseudomonas cepacia . J Infect Dis 1991; 164:133–136
    [Google Scholar]
  31. Working Party on Antibiotic Sensitivity Testing of the British Society for Antimicrobial Chemotherapy A guide to sensitivity testing. J Antimicrob Chemother 1991; 27: Suppl D 1–50
    [Google Scholar]
  32. National Committee for Clinical Laboratory Standards Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 3rd edn Document LM7-A3 1993; 13 No. 25 Villanova, PA: National Committee for Clinical Laboratory Standards;1993
    [Google Scholar]
  33. Muller-Serieys C., De Larminat V., Monteil H., Bergogne-Berezin E., Jehl H. Bronchial penetration of piperacillin-tazobactam (Pip-tz) in intensive care patients: a multiple dose study. Program and Abstracts of the 33rd Interscience Conference on Antimicrobial Agents and Chemotherapy 1993 Abstract no. 253
    [Google Scholar]
  34. Strandvik B., Malmborg A.-S., Alfredson H., Ericsson A. Clinical results and pharmacokinetics of ceftazidime treatment in patients with cystic fibrosis. J Antimicrob Chemother 1983; 12: Suppl A 283–287
    [Google Scholar]
  35. Gold R., Jin E., Levison A., Isles A., Fleming P. C. Ceftazidime alone and in combination in patients with cystic fibrosis: lack of efficacy in treatment of severe respiratory infections caused by Pseudomonas cepacia . J Antimicrob Chemother 1983; 12: Suppl A 331–336
    [Google Scholar]
  36. Lewin C., Doherty C., Govan J. In vitro activities of meropenem, PD 127391, PD 131628, ceftazidime, chloramphenicol, co-trimaxazole, and ciprofloxacin against Pseudomonas cepacia . Antimicrob Agents Chemother 1993; 37:123–125
    [Google Scholar]
  37. Corkill J. E., Deveney J., Pratt J. Effect of pH and CO2 on in vitro susceptibility of Pseudomonas cepacia to β-lactams. Pediatr Res 1994; 35:299–302
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-44-3-203
Loading
/content/journal/jmm/10.1099/00222615-44-3-203
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error