1887

Abstract

A collection of 31 epidemiologically unrelated subsp. serovar Enteritidis ( Enteritidis) isolates obtained during a 12-year period was characterised by different molecular typing methods. Plasmid profile analysis, the detection of plasmid-encoded virulence genes and ribotyping allowed little or no further differentiation amongst these isolates. Two different hybridisation patterns were observed by IS-typing of the Enteritidis isolates. However, pulsed-field gel electrophoretic separation of restriction endonuclease-digested whole-cell DNA provided a high level of discrimination amongst the 31 Enteritidis isolates. This could be increased by the comparative use of the three suitable restriction endonucleases I, I and I. Thus, pulsed-field gel electrophoresis proved to be superior in its discriminatory value to other molecular methods such as plasmid analysis, ribotyping or IS-typing and represents a most helpful tool for the epidemiological typing of Enteritidis isolates.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-44-1-52
1996-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/44/1/medmicro-44-1-52.html?itemId=/content/journal/jmm/10.1099/00222615-44-1-52&mimeType=html&fmt=ahah

References

  1. Rodrigue D. C., Tauxe R. V., Rowe B. International increase in Salmonella enteritidis: A new pandemic?. Epidemiol Infect 1990; 105:21–27
    [Google Scholar]
  2. Kühn H., Rabsch W., Liesegang A. Gegenwärtige epidemiologische Situation bei der Salmonellose des Menschen in Deutschland. Immun Infekt 1994; 22:4–9
    [Google Scholar]
  3. Anonymous PHLS-SVS: update on salmonella infection. Public Health Laboratory Service-State Veterinary Service; 199316
    [Google Scholar]
  4. Coyle E. F., Palmer S. R., Ribeiro C. D. Salmonella enteritidis phage type 4 infection: association with hen’s eggs. Lancet 1988; 2:1295–1297
    [Google Scholar]
  5. Humphrey T. J., Mead G. C., Rowe B. Poultry meat as a source of human salmonellosis in England and Wales. Epidemiol Infect 1988; 100:175–184
    [Google Scholar]
  6. Millemann Y., Lesage, M-C., Chaslus-Dancla E., Lafont J.-P. Value of plasmid profiling, ribotyping, and detection of IS200 for tracing avian isolates of Salmonella typhimurium and S. enteritidis . J Clin Microbiol 1995; 33:173–179
    [Google Scholar]
  7. Threlfall E. J., Frost J. A. The identification, typing and fingerprinting of Salmonella: laboratory aspects and epidemiological applications. J Appl Bacteriol 1990; 68:5–16
    [Google Scholar]
  8. Olsen J. E., Brown D. J., Skov M. N., Christensen J. P. Bacterial typing methods suitable for epidemiological analysis. Applications in investigations of salmonellosis among livestock. Vet Q 1993; 15:125–135
    [Google Scholar]
  9. Helmuth R., Schroeter A. Molecular typing methods for S. enteritidis . Int J Food Microbiol 1994; 21:69–77
    [Google Scholar]
  10. Threlfall E. J., Chart H. Interrelationships between strains of Salmonella enteritidis . Epidemiol Infect 1993; 111:1–8
    [Google Scholar]
  11. Olsen J. E., Skov M. N., Threlfall E. J., Brown D. J. Clonal lines of Salmonella enterica serotype Enteritidis documented by IS200-, ribo-, pulsed-field gel electrophoresis and RFLP typing. J Med Microbiol 1994; 40:15–22
    [Google Scholar]
  12. Powell N. G., Threlfall E. J., Chart H., Rowe B. Subdivision of Salmonella enteritidis PT4 by pulsed-field gel electrophoresis: potential for epidemiological surveillance. FEMS Microbiol Lett 1994; 119:193–198
    [Google Scholar]
  13. Barry A., Thomsberry C. Susceptibility tests: diffusion test procedures. In Lennette E. H., Balows A., Hausler W. J., Shadomy H. J. (eds) Manual of clinical microbiology 4th edn American Society for Microbiology; Washington DC: 1985978–987
    [Google Scholar]
  14. Ward L. R., deSa J. D. H., Rowe B. A phage-typing scheme for Salmonella enteritidis . Epidemiol Infect 1987; 99:291–294
    [Google Scholar]
  15. Schwarz S., Liebisch B. Use of ribotyping, IS200 typing and plasmid analysis for the identification of Salmonella enterica subsp. enterica serovar Typhimurium vaccine strain Zoosaloral H and its differentiation from wild type strains of the same serovar. Zentralbl Bakteriol 1994; 281:442–450
    [Google Scholar]
  16. Jordens J. Z., Hall L. M. C. Characterisation of methicillin-resistant Staphylococcus aureus isolates by restriction endonuclease analysis of chromosomal DNA. J Med Microbiol 1988; 27:117–123
    [Google Scholar]
  17. Kado C. I., Liu S. T. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 1981; 145:1365–1373
    [Google Scholar]
  18. Macrina F. L., Kopecko D. J., Jones K. R., Ayers D. J., McCowen S. M. A multiple plasmid-containing Escherichia coli strain: convenient source of size reference plasmid molecules. Plasmid 1978; 1:417–420
    [Google Scholar]
  19. Montenegro M. A., Morelli G., Helmuth R. Heteroduplex analysis of Salmonella virulence plasmids and their prevalence in isolates of defined sources. Microb Pathog 1991; 11:391–397
    [Google Scholar]
  20. Olsen J. E. An improved method for rapid isolation of plasmid DNA from wild-type Gram-negative bacteria for plasmid restriction profile analysis. Lett Appl Microbiol 1990; 10:209–212
    [Google Scholar]
  21. Sambrook J., Fritsch E. F., Maniatis T. Molecular cloning: a laboratory manual. 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  22. Iglesias A., Ceglowski P., Trautner T. A. Plasmid transformation in Bacillus subtilis. Effects of the insertion of Bacillus subtilis rRNA genes into plasmids. Mol Gen Genet 1983; 192:149–154
    [Google Scholar]
  23. Gibert I., Barbé J., Casadesŭs J. Distribution of insertion sequence IS200 in Salmonella and Shigella . J Gen Microbiol 1990; 136:2555–2560
    [Google Scholar]
  24. Chowdry N., Threlfall E. J., Rowe B., Stanley J. Genotype analysis of faecal and blood isolates of Salmonella dublin from humans in England and Wales. Epidemiol Infect 1993; 110:217–225
    [Google Scholar]
  25. Gulig P. A. Virulence plasmids of Salmonella typhimurium and other salmonellae. Microb Pathog 1990; 8:3–11
    [Google Scholar]
  26. Gulig P. A., Caldwell A. L., Chiodo V. A. Identification, genetic analysis and DNA sequence of a 7.8 kb virulence region of the Salmonella typhimurium virulence plasmid. Mol Microbiol 1992; 6:1395–1411
    [Google Scholar]
  27. Schwarz S., Liebisch B. Pulsed-field gel electrophoretic identification of Salmonella enterica serovar Typhimurium live vaccine strain Zoosaloral H. Lett Appl Microbiol 1994; 19:469–472
    [Google Scholar]
  28. Hunter P. R., Gaston M. A. Numerical index of the discriminatory ability of typing systems: an application of Simpson’s Index of Diversity. J Clin Microbiol 1988; 26:2465–2466
    [Google Scholar]
  29. Stanley J., Baquar N., Threlfall E. J. Genotypes and phylogenetic relationships of Salmonella typhimurium are defined by molecular fingerprinting of IS200 and 16S rrn loci. J Gen Microbiol 1993; 139:1133–1140
    [Google Scholar]
  30. Stanley J., Jones C. S., Threlfall E. J. Evolutionary lines among Salmonella enteritidis phage types are identified by insertion sequence distribution IS200 . FEMS Microbiol Lett 1991; 82:83–90
    [Google Scholar]
  31. Stanley J., Bumens A. P., Threlfall E. J., Chowdry N., Goldsworthy M. Genetic relationships among strains of Salmonella enteritidis in a national epidemic in Switzerland. Epidemiol Infect 1992; 108:213–220
    [Google Scholar]
  32. Stanley J., Goldsworthy M., Threlfall E. J. Molecular phylogenetic typing of pandemic isolates of Salmonella enteritidis . FEMS Microbiol Lett 1992; 90:153–160
    [Google Scholar]
  33. Bautsch W. NotI macrorestriction analysis suggests a clonal relationship of Salmonella enterica, ser. enteritidis phage lysotype 4 strains. Infection 1993; 21:328–330
    [Google Scholar]
  34. Olsen J. E., Skov M. Genomic lineage of Salmonella enterica serovar Dublin. Vet Microbiol 1994; 40:271–282
    [Google Scholar]
  35. Torre E., Threlfall E. J., Hampton M. D., Ward L. R., Gibert I., Rowe B. Characterization of Salmonella virchow phage types by plasmid profile and IS200 distribution. J Appl Bacteriol 1993; 75:435–440
    [Google Scholar]
  36. Stanley J., Bumens A., Powell N., Chowdry N., Jones C. The insertion sequence IS200 fingerprints chromosomal genotypes and epidemiological relationships in Salmonella heidelberg . J Gen Microbiol 1992; 138:2329–2336
    [Google Scholar]
  37. Stanley J., Chowdry N., Powell N., Threlfall E. J. Chromosomal genotypes (evolutionary lines) of Salmonella berta . FEMS Microbiol Lett 1992; 95:247–252
    [Google Scholar]
  38. Olsen J. E., Brown D. J., Baggesen D. L., Bisgaard M. Biochemical and molecular characterization of Salmonella enterica serotype Berta, and comparison of methods for typing. Epidemiol Infect 1992; 108:243–260
    [Google Scholar]
  39. Threlfall E. J., Torre W., Ward L. R., Dávalos-Pérez A., Rowe B., Gibert I. Insertion sequence IS200 fingerprinting of Salmonella typhi: an assessment of epidemiological applicability. Epidemiol Infect 1994; 112:253–261
    [Google Scholar]
  40. Ezquerra E., Bumens A., Jones C., Stanley J. Genotypic typing and phylogenetic analysis of Salmonella paratyphi B and S. java with IS200 . J Gen Microbiol 1993; 139:2409–2414
    [Google Scholar]
  41. Martinetti G., Altwegg M. rRNA gene restriction patterns and plasmid analysis as a tool for typing Salmonella enteritidis . Res Microbiol 1990; 141:1151–1162
    [Google Scholar]
  42. Helmuth R., Stephan R., Bunge C., Hoog B., Steinbeck A., Bulling E. Epidemiology of virulence-associated plasmids and outer membrane protein patterns with seven common Salmonella serotypes. Infect Immun 1985; 48:175–182
    [Google Scholar]
  43. Brown D. J., Threlfall E. J., Hampton M. D., Rowe B. Molecular characterization of plasmids in Salmonella enteritidis phage types. Epidemiol Infect 1993; 110:209–216
    [Google Scholar]
  44. Chart H., Rowe B., Threlfall E. J., Ward L. R. Conversion of Salmonella enteritidis phage type 4 to phage type 7 involves loss of lipopolysaccharide with concomitant loss of virulence. FEMS Microbiol Lett 1989; 60:37–40
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-44-1-52
Loading
/content/journal/jmm/10.1099/00222615-44-1-52
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error