A numerical taxonomic study of the gram-positive anaerobic cocci Free

Abstract

Summary

Clinical (101) and collection (26) strains of gram-positive anaerobic cocci were examined in conventional tests and pyrolysis mass spectrometry (PMS). Numerical classifications based upon conventional test reaction patterns (CTRPs) and PMS showed 27 and 22 clusters, respectively. Cross-tabulation of cluster membership in the two classifications showed excellent correlation, with the combined classifications showing clear groups corresponding to the currently recognised species and . Strains of and clustered together in a heterogeneous group of saccharolytic organisms. However, strains previously identified as were divided into three distinct groups in PMS, two of which differed only in indole-associated pyrolysis products. A further four groups and several single-member clusters were distinct from these species. PMS data supported the validity of identification by pre-formed enzyme profiles and confirmed that Hare group III is synonymous with , Hare group IV with , and the “ADH group” with . There is clearly a need for a taxonomic revision of the genus , which probably encompasses several generic groups.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-43-2-148
1995-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/43/2/medmicro-43-2-148.html?itemId=/content/journal/jmm/10.1099/00222615-43-2-148&mimeType=html&fmt=ahah

References

  1. Neut C., Lesieur V., Romond C. Analysis of gram-positive anaerobic cocci in oral, fecal and vaginal flora. Eur J Clin Microbiol 1985; 4:435–437
    [Google Scholar]
  2. Holdeman Moore L. V., Johnson J. L., Moore W. E. C. Genus Peptococcus; Genus Peptostreptococcus. In Sneath P. H. A. (eds. Mair, N. S. Sharpe, M. E. Holt, J.G.) Bergey’s Manual of systematic bacteriology vol 2 Baltimore: Williams and Wilkins; 19861082–1083 1083–1092
    [Google Scholar]
  3. Bartlett J. G. Anaerobic cocci. In Mandell G. L., Douglas R. G., Bennett J. E. (eds) Principles and practice of infectious diseases 3rd edn New York: Churchill Livingstone; 19901867–1869
    [Google Scholar]
  4. Summanen P., Baron E. J., Citron D. M. Wadsworth anaerobic bacteriology manual. 5th edn Los Angeles: Star Publishing Co.; 1993
    [Google Scholar]
  5. Wren M. W. D., Baldwin A. W. F., Eldon C. P., Sanderson P. J. The anaerobic culture of clinical specimens: a 14-month study. J Med Microbiol 1977; 10:49–61
    [Google Scholar]
  6. Rosenblatt J. E. Anaerobic cocci. In Lennette E. H., Balows A., Hausler W. J., Shadomy H. J. (eds) Manual of clinical microbiology 4th edn Washington: American Society for Microbiology; 1985445–449
    [Google Scholar]
  7. Brook I. Recovery of anaerobic bacteria from clinical specimens in 12 years at two military hospitals. J Clin Microbiol 1988; 26:1181–1188
    [Google Scholar]
  8. Murdoch D. A., Mitchelmore I. J., Tabaqchali S. The clinical importance of gram-positive anaerobic cocci isolated at St Bartholomew’s Hospital, London, in 1987. J Med Microbiol 1994; 41:36–44
    [Google Scholar]
  9. Ezaki T., Yabuuchi E. Oligopeptidase activity of Gram-positive anaerobic cocci used for rapid identification. J Gen Appl Microbiol 1985; 31:255–265
    [Google Scholar]
  10. Ezaki T., Oyaizu H., Yabuuchi E. The anaerobic gram-positive cocci. In Balows A. (eds) The prokaryotes 2nd edn Berlin: Springer-Verlag; 19911879–1892
    [Google Scholar]
  11. Hillier S., Moncla B. J. Anaerobic gram-positive nonspore forming bacilli and cocci. In Balows A., Hausler W. J., Herrmann K. L., Isenberg H. D., Shadomy H. J. (eds) Manual of clinical microbiology 5th edn Washington: American Society for Microbiology; 1991522–537
    [Google Scholar]
  12. Stenson M. J., Lee D. T., Rosenblatt J. E., Contezac J. M. Evaluation of the AnIdent system for the identification of anaerobic bacteria. Diagn Microbiol Infect Dis 1986; 5:9–15
    [Google Scholar]
  13. Murdoch D. A., Mitchelmore I. J., Tabaqchali S. Identification of gram-positive anaerobic cocci by use of systems for detecting pre-formed enzymes. J Med Microbiol 1988; 25:289–293
    [Google Scholar]
  14. Murdoch D. A., Mitchelmore I. J. The laboratory identification of gram-positive anaerobic cocci. J Med Microbiol 1991; 34:295–308
    [Google Scholar]
  15. Li N., Hashimoto Y., Ezaki T. Determination of 16S ribosomal RNA sequences of all members of the genus Peptostreptococcus and their phylogenetic position. FEMS Microbiol Lett 1994; 116:1–6
    [Google Scholar]
  16. Harpold D. J., Wasilauskas B. L. Rapid identification of obligately anaerobic gram-positive cocci using high-performance liquid chromatography. J Clin Microbiol 1987; 25:996–1001
    [Google Scholar]
  17. Ng L.-K., Dillon J. A. R. Molecular fingerprinting of isolates of the genus Peptostreptococcus using rRNA genes from Escherichia coli and P. anaerobius. J Gen Microbiol 1991; 137:1323–1331
    [Google Scholar]
  18. Magee J. Whole-organism fingerprinting. In Goodfellow M., O’Donnell A. G. (eds) Handbook of new bacterial systematics London: Academic Press; 1993383–427
    [Google Scholar]
  19. Hindmarch J. M., Magee J. T., Hadfield M. A., Duerden B. I. A pyrolysis-mass spectrometry study of Corynebacterium spp. J Med Microbiol 1990; 31:137–149
    [Google Scholar]
  20. Magee J. T., Hindmarch J. M., Bennett K. W., Duerden B. I., Aries R. E. A pyrolysis mass spectrometry study of fusobacteria. J Med Microbiol 1989; 28:227–236
    [Google Scholar]
  21. Winstanley T. G., Magee J. T., Limb D. I. A numerical taxonomic study of the “Streptococcus milleri” group based upon conventional phenotypic tests and pyrolysis mass spectrometry. J Med Microbiol 1992; 36:149–155
    [Google Scholar]
  22. Wishart D. Clustan user’s manual. 4th edn Computing Laboratory, University of St Andrews; 1987
    [Google Scholar]
  23. Holdeman L. V., Cato E. P., Moore W. E. C. Anaerobe laboratory manual. 4th edn Blacksburg: Virginia Polytechnic Institute and State University; 1977
    [Google Scholar]
  24. Bourgault A.-M., Rosenblatt J. E., Fitzgerald R. H. Peptococcus magnus: a significant human pathogen. Ann Int Med 1980; 93:244–248
    [Google Scholar]
  25. Murdoch D. A., Mitchelmore I. J., Tabaqchali S. Peptostreptococcus micros in polymicrobial abscesses. Lancet 1988; 1:594
    [Google Scholar]
  26. Murdoch D. A., Mitchelmore I. J. Isolation of Peptostreptococcus heliotrinreducens from human polymicrobial abscesses. Lett Appl Microbiol 1989; 9:223–225
    [Google Scholar]
  27. Taylor E. A., Jackman P. J. H., Phillips I. The differentiation of asaccharolytic anaerobic gram-positive cocci by protein electrophoresis. J Med Microbiol 1991; 34:339–348
    [Google Scholar]
  28. Murdoch D. A., Mitchelmore I. J., Nash R. A., Hardie J. M., Tabaqchali S. Preformed enzyme profiles of reference strains of gram-positive anaerobic cocci. J Med Microbiol 1988; 27:65–70
    [Google Scholar]
  29. Li N., Hashimoto Y., Adnan S., Miura H., Yamamoto H., Ezaki T. Three new species of the genus Peptostreptococcus isolated from humans: Peptostreptococcus vaginalis sp. nov., Peptostreptococcus lacrimalis sp. nov., and Peptostreptococcus lactolyticus sp. nov. Int J Syst Bacteriol 1992; 42:602–605
    [Google Scholar]
  30. Ezaki T., Liu S.-L., Hashimoto Y., Yabuuchi E. Peptostreptococcus hydrogenalis sp. nov. from human fecal and vaginal flora. Int J Syst Bacteriol 1990; 40:305–306
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-43-2-148
Loading
/content/journal/jmm/10.1099/00222615-43-2-148
Loading

Data & Media loading...

Most cited Most Cited RSS feed