1887

Abstract

Surmmary

Administration of either gentamicin or amikacin induced an increase in the number of amikacin-resistant (AR) isolates of certain Enterobacteriaceae and species in a hospital in Buenos Aires. A total of 127 AR isolates was selected to study the molecular mechanisms of resistance involved. The (′)- gene was found by dot-blot hybridisation in every isolate. A gene different from (′)-(′)- and (′)- encoding the AAC(6′)-I activity was found in a 15-5-kb plasmid in spp. Plasmids from 27 Enterobacteriaceae contained an aac(′)- gene and 26 of these carried sequences related to the Tn1331 transposon, whereas one plasmid showed homology in another fragment of the Tn1331 transposase. Because plasmids bearing the (′)- gene were heterogeneous, dissemination of the (′)- gene may have been due to transposition of Tn1331 rather than the spread of an epidemic plasmid. The rate of AR isolates varied within each species in spite of the presence of Tn1331, and it is likely, therefore, that this transposon may not be the sole factor responsible for the observed variation. The (′)- gene (originally described in spp.) was found with high frequency (80%) in this population. Furthermore, this gene was found also in plasmids from 20% of other gram-negative organisms commonly involved in nosocomial infections in this hospital.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-42-4-283
1995-04-01
2022-08-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/42/4/medmicro-42-4-283.html?itemId=/content/journal/jmm/10.1099/00222615-42-4-283&mimeType=html&fmt=ahah

References

  1. Garcia D. C., Trevisan A. R., Botto L., Cervetto M., Sarubbi M. A., Zorzopulos J. An outbreak of multiply resistant Pseudomonas aeruginosa in a neonatal unit: plasmid pattern analysis. J Hosp Infect 1989; 14:99–105
    [Google Scholar]
  2. Larson T. A., Garrett C. R., Gerding D. N. Frequency of aminoglycoside 6′-N-acetyltransferase among Serratia species during increased use of amikacin in the hospital. Anti-microb Agents Chemother 1986; 30:176–178
    [Google Scholar]
  3. Gerding D. N., Larson T. A., Hughes R. A., Weiler M., Shanholtzer C., Peterson L. R. Aminoglycoside resistance and aminoglycoside usage: ten years of experience in one hospital. Antimicrob Agents Chemother 1990; 35:1284–1290
    [Google Scholar]
  4. Levine J. F., Maslow M. J., Leibowitz R. E. Amikacin-resistant Gram-negative bacilli: correlation of occurrence with amikacin use. J Infect Dis 1985; 151:295–300
    [Google Scholar]
  5. Hopkins J. D., Flores A., Pilar-Pla M., Lester S., O’Brien T. F. Nosocomial spread of an amikacin resistance gene on both a mobilized, nonconjugative plasmid and a conjugative plasmid. Antimicrob Agents Chemother 1991; 35:1605–1611
    [Google Scholar]
  6. Shaw K. J., Rather P. N., Hare R. S., Miller G. H. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 1993; 57:138–163
    [Google Scholar]
  7. Shimizu K., Kumada T., Hsieh W. C. Comparison of aminoglycoside resistance patterns in Japan, Formosa, and Korea, Chile, and the United States. Antimicrob Agents Chemother 1985; 28:282–288
    [Google Scholar]
  8. Shaw K. J., Rather P. N., Sabatelli F. J. Characterization of the chromosomal aac (6′)-Ic gene from Serratia marcescens . Antimicrob Agents Chemother 1992; 36:1447–1455
    [Google Scholar]
  9. Meyer J. F., Nies B. A., Wiedemann B. Amikacin resistance mediated by multiresistance transposon Tn2424. J Bacteriol 1983; 155:755–760
    [Google Scholar]
  10. Tolmasky M. E., Crosa J. H. Tn1331, a novel multiresistance transposon encoding resistance to amikacin and ampicillin in Klebsiella pneumoniae . Antimicrob Agents Chemother 1987; 31:1955–1960
    [Google Scholar]
  11. Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli . J Mol Biol 1969; 41:459–472
    [Google Scholar]
  12. Ditta G., Stanfield S., Corbin D., Helinski D. R. Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti . Proc Natl AcadSci USA 1981; 77:7347–7351
    [Google Scholar]
  13. Kelly M. T., Brenner D. J., Farmer J. J. Enterobacteriaceae. In Lennette E. H. (ed) Manual of clinical microbiology 4th edn Washington DC: American Society for Microbiology; 1985263–281
    [Google Scholar]
  14. Bauer A., Kirby W., Sherris J. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496
    [Google Scholar]
  15. National Committee for Clinical Laboratory Standards Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A2. National Committee for Clinical Laboratory Standards, Vilanova, Pennsylvania
    [Google Scholar]
  16. Miller G. H., Sabatelli F. J., Hare R. S., Waitz J. A. Survey of aminoglycoside resistance patterns. Dev Ind Microbiol 1980; 21:91–104
    [Google Scholar]
  17. Tenover F. C., Filpula D., Phillips K. L., Plorde J. J. Cloning and sequencing of a gene encoding an aminoglycoside 6′-N-acetyltransferase from an R factor of Citrobacter diversus . J Bacteriol 1988; 170:471–473
    [Google Scholar]
  18. Shaw K. J., Hare R. S., Sabatelli F. J. Correlation between aminoglycoside resistance profiles and DNA hybridization of clinical isolates. Antimicrob Agents Chemother 1991; 35:2253–2261
    [Google Scholar]
  19. Hanahan D. Mechanisms of DNA transformation. In Neidhardt F. C. (ed) Escherichia coli and Salmonella typhimurium: cellular and molecular biology vol 2 Washington DC: American Society for Microbiology; 19871177–1183
    [Google Scholar]
  20. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 1979; 7:1513–1516
    [Google Scholar]
  21. Sambrook J., Fritsch E. F., Maniatis T. Molecular cloning: a laboratory manual. 2nd edn Cold Spring Harbor: NY, Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  22. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975; 98:503–517
    [Google Scholar]
  23. Lambert T., Gerbaud G., Courvalin P. Transferable amikacin resistance in Acinetobacter spp. due to a new type of 3′-aminoglycoside phosphotransferase. Antimicrob Agents Chemother 1988; 32:15–19
    [Google Scholar]
  24. Lambert T., Gerbaud G., Bouvet P., Vieu J. F., Courvalin P. Dissemination of amikacin resistance gene aphA6 in Acinetobacter spp. Antimicrob Agents Chemother 1990; 34:1244–1248
    [Google Scholar]
  25. Centron Garcia D. Molecular basis of amikacin resistance in bacteria from the hospital environment. (PhD Thesis) Buenos Aires, Argentina: University of Buenos Aires; 1994
    [Google Scholar]
  26. Lambert T., Gerbaud G., Courvalin P. Characterisation of transposon Tnl528 conferring amikacin resistance in Enterobacteriaceae by synthesis of a 3′-aminoglycoside phosphotransferase type VI. Abstracts of the 31st Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago, IL, American Society for Microbiology 1991 Abstract no. 1360 325
    [Google Scholar]
  27. Gaynes R., Groisman E., Nelson E., Casadaban M., Lerner S. A. Isolation, characterization, and cloning of a plasmid-borne gene encoding a phosphotransferase that confers high-level of amikacin resistance in enteric bacilli. Antimicrob Agents Chemother 1988; 32:1379–1384
    [Google Scholar]
  28. Tolmasky M. E., Roberts M., Woloj M., Crosa J. H. Molecular cloning of amikacin resistance determinants from a Klebsiella pneumoniae plasmid. Antimicrob Agents Chemother 1986; 30:315–320
    [Google Scholar]
  29. Van Nhieu G. T., Goldstein F. W., Pinto M. E., Acas J. F., Collatz E. Transfer of amikacin resistance by closely related plasmids in members of the family Enterobacteriaceae isolated in Chile. Antimicrob Agents Chemother 1986; 29:833–837
    [Google Scholar]
  30. Tran Van Nhieu G., Collatz E. Primary structure of an aminoglycoside 6′-N-acetyltransferase, AAC (6′)-4, fused in vivo with the signal peptide of the Tn 3-encoded β -lactamase. J Bacteriol 1987; 169:5708–5714
    [Google Scholar]
  31. Lambert T., Gerbaud G., Galimand M., Courvalin P. Characterization of Acinetobacter haemolyticus aac (6′)-Ig gene encoding an aminoglycoside 6′–N–acetyltransferase which modifies amikacin. Antimicrob Agents Chemother 1993; 37:2093–2100
    [Google Scholar]
  32. Vanhoof R., Content J., Van Bossuyt E. Use of the polymerase chain reaction (PCR) for the detection of aacA genes encoding aminoglycoside–6′–N–acetyltransferases in reference strains and gram–negative clinical isolates from two Belgium hospitals. J Antimicrob Chemother 1993; 32:23–25
    [Google Scholar]
  33. Sociedad Argentina de Bacteriología Chínica Annual Reports of the Subcomision de Antimicrobianos. Asociacion Argentina de Microbiologia, Buenos Aires1984–1989
    [Google Scholar]
  34. Milosovic P., Macicková T., Kettner M., Kallova J. Development of amikacin resistance in bacterial isolates in Slovakia (1990–1992). Int J Antimicrob Agents 1994; 4:69–71
    [Google Scholar]
  35. O’Brien T. F., Plá M del P., Mayer K. H. Intercontinental spread of a new antibiotic resistance gene on a epidemic plasmid. Science 1985; 230:87–88
    [Google Scholar]
  36. Ouellette M., Bissonnette L., Roy P. H. Precise insertion of antibiotic resistance determinants into Tn2I–like trans– posons: nucleotide sequence of the OX A–1 β–lactamase gene. Proc Natl Acad Sci USA 1987; 84:7378–7382
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-42-4-283
Loading
/content/journal/jmm/10.1099/00222615-42-4-283
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error