1887

Abstract

Surmmary

O139 organisms isolated from different parts of India and from Bangladesh were characterised with respect to their haemagglutination (HA) activity, plasmid content, cholera toxin (CT) production, cell surface protein and lipopolysaccharide (LPS) profiles, and antigenic properties. Of 28 O139 isolates tested, 14 (50%) were shown to agglutinate chicken erythrocytes; the HA activity was sensitive to D-mannose 0.1 %. In parallel experiments, 12 (92.3%) of 13 O1 (El Tor) and 12 (75%) of 16 non-O1, non-O139 strains agglutinated chicken erythrocytes. Plasmid analysis of 32 O139 isolates showed that 12 (37.5%) carried one or more plasmids of 35.8-2.6 MDa. Plasmids were not detected in any of the O1 strains, although plasmids were demonstrable in 35% of the non-O1, non-O139 strains tested. O139 isolates showed an ability to produce CT that depended on media composition and other cultural conditions. A comparison of envelope and outer-membrane protein profiles between O1 and O139 isolates failed to show any significant differences. LPS analysis of O139 isolates revealed that these organisms were devoid of long “O” side-chain polysaccharides. Some of the non-O1, non-O139 strains also showed similar LPS profiles whereas others showed the presence of long repetitive “O” side-chain polysaccharides similar to those seen in O1 organisms. An antiserum raised against O1 strain O395 did not show any significant reactivity towards O139 and non-O1, non-O139 strains although it reacted with other O1 strains. Furthermore, the anti-O1 serum induced marked protection against challenge with an O1 strain but not with an O139 strain in passive protection experiments. All these results indicate that, despite sharing some common properties with O1, the O139 isolates posses certain characteristics that make them distinct from their O1 counterparts.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-42-4-251
1995-04-01
2024-04-12
Loading full text...

Full text loading...

/deliver/fulltext/jmm/42/4/medmicro-42-4-251.html?itemId=/content/journal/jmm/10.1099/00222615-42-4-251&mimeType=html&fmt=ahah

References

  1. Blake P. A. Historical perspectives on pandemic cholera. In Wachsmuth I. K., Blake P. A., Olsvik O. (eds) Vibrio cholerae and cholera: molecular to global perspectives Washington D. C.: ASM Press; 1994293
    [Google Scholar]
  2. Blake P. A., Weaver R. E., Hollis D. G. Diseases of humans (other than cholera) caused by Vibrios. Anna Rev Microbiol 1980; 34:341–367
    [Google Scholar]
  3. Sanyal S. C. Epidemiology and pathogenicity of non-Ol vibrio species and related organisms. In Barua D., Greenough W. B. (eds) Cholera New York: Plenum Medical Book Company; 199257–67
    [Google Scholar]
  4. Shimada T., Nair G. B., Deb B. C., Albert M. J., Sack R. B., Takeda Y. Outbreak of Vibrio cholerae non-Ol in India and Bangladesh. Lancet 1993; 341:13–47
    [Google Scholar]
  5. Ramamurthy T., Garg S., Sharma R. Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet 1993; 341:703–704
    [Google Scholar]
  6. Cholera working group, International Centre for Diarrhoeal Disease Research, Bangladesh Large epidemic of choleralike disease in Bangladesh caused by Vibrio cholerae 0139 synonym Bengal. Lancet 1993; 342:387–390
    [Google Scholar]
  7. Hall R. H., Khambaty F. M., Kothary M., Keasler S. P. Non-Ol Vibrio cholerae . Lancet 1993; 342:430
    [Google Scholar]
  8. Waldor M. K., Mekalanos J. J. ToxR regulates virulence gene expression in non-Ol strains of Vibrio cholerae that cause epidemic cholera. Infect Immun 1994; 62:72–78
    [Google Scholar]
  9. Sengupta T. K., Sengupta D. K., Nair G. B., Ghose A. C. Epidemic isolates of Vibrio cholerae 0139 express antigenically distinct types of colonization pili. FEMS Microbiol Lett 1994; 118:265–272
    [Google Scholar]
  10. Sengupta D., Datta-Roy K., Banerjee K., Ghose A. C. Identification of some antigenically related outer-membrane proteins of strains of Vibrio cholerae 01 and non-Ol serovars involved in intestinal adhesion and the protective role of antibodies to them. J Med Microbiol 1989; 29:33–39
    [Google Scholar]
  11. Datta-Roy K., Banerjee K., De S. P., Ghose A. C. Comparative study of expression of hemagglutinins, hemolysins, and enterotoxins by clinical and environmental isolates of non-Ol Vibrio cholerae in relation to their enteropathogenicity. Appl Environ Microbiol 1986; 52:875–879
    [Google Scholar]
  12. Finkelstein R. A., Mukerjee S. Hemagglutination: a rapid method for differentiating Vibrio cholerae and El Tor vibrios. Proc Soc Exp Biol Med 1963; 112:355–359
    [Google Scholar]
  13. Datta-Roy K., Dasgupta C., Ghose A. C. Hemagglutination and intestinal adherence properties of clinical and environmental isolates of non-Ol Vibrio cholerae . Appl Environ Microbiol 1989; 55:2403–2406
    [Google Scholar]
  14. Iwanaga M., Yamamoto K. New medium for the production of cholera toxin by Vibrio cholerae Ol biotype El Tor. J Clin Microbiol 1985; 22:405–408
    [Google Scholar]
  15. Booth B. A., Finkelstein R. A. Presence of hemagglutinin/protease and other potential virulence factors in Ol and non-Ol Vibrio cholerae . J Infect Dis 1986; 154:183–186
    [Google Scholar]
  16. Hitchcock P. J., Brown T. M. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol 1983; 154:269–277
    [Google Scholar]
  17. Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 1982; 119:115–119
    [Google Scholar]
  18. Westphal O., Jann K. Bacterial lipopolysaccharides. Extraction with phenol-water and further applications of the procedure. Methods Carbohydr Chem 1965; 5:83–91
    [Google Scholar]
  19. Sengupta D. K., Sengupta T. K., Ghose A. C. Major outer membrane proteins of Vibrio cholerae and their role in induction of protective immunity through inhibition of intestinal colonization. Infect Immun 1992; 60:4848–4855
    [Google Scholar]
  20. Filip C., Fletcher G., Wulff J. L., Earhart C. F. Solubilization of the cytoplasmic membrane of Escherichia coli by ionic detergent sodium-lauryl sarcosinate. J Bacteriol 1973; 115:717–722
    [Google Scholar]
  21. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 1979; 7:1513–1523
    [Google Scholar]
  22. Marcina F. L., Kopecko D. J., Jones K. R., Ayers D. J., McCowen S. M. A multiple plasmid-containing Escherichia coli strain: Convenient source of size reference plasmid molecules. Plasmid 1978; 1:417–420
    [Google Scholar]
  23. Holmgren J. Comparison of the tissue receptors for Vibrio cholerae and Escherichia coli enterotoxins by means of gangliosides and natural cholerae toxoid. Infect Immun 1973; 8:851–859
    [Google Scholar]
  24. Hall R. H., Vial P. A., Kaper J. B., Mekalanos J. J., Levine M. M. Morphological studies on fimbriae expressed by Vibrio cholerae Ol. Microb Pathog 1988; 4:257–265
    [Google Scholar]
  25. Cryz S. J., Fürer E., Germanier R. Development of an enzyme-linked immunosorbent assay for studying Vibrio cholerae cell surface antigens. J Clin Microbiol 1982; 16:41–45
    [Google Scholar]
  26. Majumdar A. S., Dutta P., Dutta D., Ghose A. C. Antibacterial and antitoxin responses in the serum and milk of cholera patients. Infect Immun 1981; 32:1–8
    [Google Scholar]
  27. Ujiiye A., Nakatomi M., Utsumomiya K. Experimental cholera in mice. I. First report on the oral infection. Trop Med 1968; 10:65–71
    [Google Scholar]
  28. Sengupta D. K., Sengupta T. K., Ghose A. C. Antibodies to outer membrane proteins of Vibrio cholerae induce protection by inhibition of intestinal colonization of vibrios. FEMS Microbiol Immunol 1992; 89:261–266
    [Google Scholar]
  29. Holmgren J., Svennerholm A.-M., Lindblad M. Receptor-like glycocompounds in human milk that inhibit classical and El Tor Vibrio cholerae cell adherence (hemagglutination). Infect Immun 1983; 39:147–154
    [Google Scholar]
  30. Jonson G., Holmgren J., Svennerholm A. M. Identification of a mannose-binding pilus on Vibrio cholerae El Tor. Microb Pathog 1991; 11:433–441
    [Google Scholar]
  31. Cook W. L., Wachsmuth K., Johnson S. R., Birkness K. A., Samadi A. R. Persistence of plasmids, cholera toxin genes, and profage DNA in classical Vibrio cholerae Ol. Infect Immun 1984; 45:222–226
    [Google Scholar]
  32. Bartowsky E. J., Manning P. A. Molecular donning of the plasmids of Vibrio cholerae 01 and the incidence of related plasmids in clinical isolates and other Vibrio species. FEMS Microbiol Lett 1988; 50:183–190
    [Google Scholar]
  33. Newland J. W., Voll M. J., McNichol L. A. Serology and plasmid carriage in Vibrio cholerae . Can J Microbiol 1984; 30:1149–1156
    [Google Scholar]
  34. Barja J. L., Santos Y., Huq I., Colwell R. R., Toranzo A. E. Plasmids and factors associated with virulence in environmental isolates of Vibrio cholerae non-Ol in Bangladesh. J Med Microbiol 1990; 33:107–114
    [Google Scholar]
  35. Hedges R. W., Vialard J. L., Pearson N. J., O’Grady F. R plasmids from Asian strains of Vibrio cholerae . Antimicrob Agents Chemother 1977; 11:585–588
    [Google Scholar]
  36. Threlfall E. J., Rowe B., Huq I. Plasmid-encoded multiple antibiotics resistance in Vibrio cholerae El Tor from Bangladesh. Lancet 1980; 1:1247–1248
    [Google Scholar]
  37. Bartowsky E. J., Attridge S. R., Thomas C. J., Mayrhofer G., Manning P. A. Role of the P plasmid in attenuation of Vibrio cholerae Ol. Infect Immun 1990; 58:3129–3134
    [Google Scholar]
  38. Taylor R. K., Miller V. L., Furlong D. B., Mekalanos J. J. Use of PhoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci USA 1987; 84:2833–2837
    [Google Scholar]
  39. Johnson J. A., Panigrahi P., Morris J. G. Non-Ol V. cholera NRT36S produces a polysaccharide capsule that determines colony morphology, serum resistance, and virulence in mice. Infect Immun 1992; 60:864–869
    [Google Scholar]
  40. Johnson J. A., Salles C. A., Panigrahi P. Vibrio cholerae O139 synonym Bengal is closely related to Vibrio cholerae El Tor but has important differences. Infect Immun 1994; 62:2108–2110
    [Google Scholar]
  41. Nair G. B., Ramamurthy T., Bhattacharya S. K. Spread of Vibrio cholerae 0139 Bengal in India. J Infect Dis 1994; 169:1029–1034
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-42-4-251
Loading
/content/journal/jmm/10.1099/00222615-42-4-251
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error