1887

Abstract

Surmmary

A collection of 129 strains belonging to DNA groups (genomic species) 1–14 (1–7 and 10–12 Bouvet and Grimont; 8 and 13–14 Tjernberg and Ursing) were investigated for their ability to oxidise 95 carbon sources in the Biolog system. The strain groupings obtained by cluster analysis with the Biolog software were compared with the results of DNA-DNA hybridisation studies. Strains of DNA groups 1 (), 2 (), 3 and 13 were linked in one cluster, as were DNA groups 4 () and 6, DNA groups 10 and 11, and DNA groups 8 () and 12 (). Strains of DNA group 5 () were grouped in a single cluster with one strain of DNA group 4. Strains of DNA groups 7 () and 14 formed separate clusters. With the exception of the linkage of DNA groups 8 and 12, these results correlated with classification of reference strains of the DNA groups by DNA-DNA hybridisation, but six strains of four different DNA groups were not allocated to the clusters of their respective DNA groups. In the case of DNA groups-4, 5, 6, 7, 10, 11 and 14, at least one carbon source oxidation test could be used to differentiate them from the other DNA groups.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-42-2-113
1995-02-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/42/2/medmicro-42-2-113.html?itemId=/content/journal/jmm/10.1099/00222615-42-2-113&mimeType=html&fmt=ahah

References

  1. Bergogne-Bérézin E., Joly-Guillou M. L., Vieu J. F. Epidemiology of nosocomial infections due to Acinetobacter calcoaceticus. J Hosp Infect 1987; 10:105–113
    [Google Scholar]
  2. Baumann P., Doudoroff M., Stanier R. Y. A study of the Moraxella Group; II. oxidative-negative species (genus Acinetobacter). J Bacteriol 1968; 95:1520–1541
    [Google Scholar]
  3. Henriksen S. D. Moraxella, Acinetobacter, and the Mimiae. Bacteriol Rev 1973; 37:522–561
    [Google Scholar]
  4. Bouvet P. J. M., Grimont P. A. D. Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int J Syst Bacteriol 1986; 36:228–240
    [Google Scholar]
  5. Tjernberg I., Ursing J. Clinical strains of Acinetobacter classified by DNA-DNA hybridization. APMIS 1989; 97:595–605
    [Google Scholar]
  6. Nishimura Y., Ino Y., Iizuka H. Acinetobacter radioresistens sp. nov. isolated from cotton and soil. Int J Syst Bacteriol 1988; 38:209–211
    [Google Scholar]
  7. Bouvet P. J. M., Jeanjean S. Delineation of new proteolytic genomic species in the genus Acinetobacter. Res Microbiol 1989; 140:291–299
    [Google Scholar]
  8. Bouvet P. J. M., Grimont P. A. D. Identification and biotyping of clinical isolates of Acinetobacter. Ann Inst Past/Microbiol 1987; 138:569–578
    [Google Scholar]
  9. Gerner-Smidt P., Tjernberg I., Ursing J. Reliability of phenotypic tests for identification of Acinetobacter species. J Clin Microbiol 1991; 29:277–282
    [Google Scholar]
  10. Kämpfer P., Tjernberg I., Ursing J. Numerical classification and identification of Acinetobacter genomic species. J Appl Bacteriol 1993; 75:259–268
    [Google Scholar]
  11. Soddell J. A., Beacham A. M., Seviour R. J. Phenotypic identification of non-clinical isolates of Acinetobacter species. J Appl Bacteriol 1993; 74:210–214
    [Google Scholar]
  12. Miller J. M., Rhoden D. L. Preliminary evaluation of Biolog, a carbon source utilization method for bacterial identification. J Clin Microbiol 1991; 29:1143–1147
    [Google Scholar]
  13. Klingler J. M., Stowe R. P., Obenhuber D. C., Groves T. O., Mishra S. K., Pierson D. L. Evaluation of the Biolog automated microbial identification system. Appl Environ Microbiol 1992; 58:2089–2092
    [Google Scholar]
  14. Knight G. C., McDonnell S. A., Seviour R. J., Soddell J. A. Identification of Acinetobacter isolates using the Biolog identification system. Lett Appl Microbiol 1993; 16:261–264
    [Google Scholar]
  15. Dijkshoorn L., Tjernberg I., Pot B., Michel M. F., Ursing J., Kersters K. Numerical analysis of cell envelope protein profiles of Acinetobacter strains classified by DNA-DNA hybridization. Syst Appl Microbiol 1990; 13:338–344
    [Google Scholar]
  16. Tjernberg I., Lindh E., Ursing J. A quantitative bacterial dot method for DNA-DNA hybridization and its correlation to the hydroxyapatite method. Curr Microbiol 1989; 18:77–81
    [Google Scholar]
  17. Bonting C. F. C., Willemsen B. M. F., Akkermans-van Vliet W., Bouvet P. J. M., Kortstee G. J. J., Zehnder A. J. B. Additional characteristics of the polyphosphate-accumulating Acinetobacter strain 210A and its identification as Acinetobacter johnsonii. FEMS Microbiol Ecol 1992; 102:57–64
    [Google Scholar]
  18. Sneath P. H. A. Computer taxonomy. In Norris J. R., Ribbons D. W. (eds) Methods in microbiology vol 7A London: Academic Press; 197229–98
    [Google Scholar]
  19. Den Dooren de Jong L. E. Bijdrage tot de kennis van het mineralisatieproces. (Thesis). Nijgh & van Ditmar’s uitgevers Mij. Rotterdam 1926
    [Google Scholar]
  20. Gerner-Smidt P. Ribotyping of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J Clin Microbiol 1992; 30:2680–2685
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-42-2-113
Loading
/content/journal/jmm/10.1099/00222615-42-2-113
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error