Killing of methicillin-resistant by low-power laser light Free

Abstract

Surmmary

The purpose of this study was to determine whether a methicillin-resistant strain of (MRSA) could be sensitised by toluidine blue O (TBO) to killing by light from a low-power helium/neon (HeNe) laser. Suspensions containing . 10 cfu of MRSA were irradiated with light from a 35 mW HeNe laser (energy dose: 0.5–2.1 J) in the presence of TBO (1.6–12.5 μg/ml) and the survivors were enumerated. The kills attained depended on both the light energy dose and concentration of TBO employed. A 4.47 log reduction in the viable count was achieved with a TBO concentration of 12.5 μg/ml and a light dose of 2.1 J (energy density 43 J/cm). MRSA were susceptible to killing by the laser light within 30 s of exposure to the TBO. The results of this study have demonstrated that MRSA can be rapidly sensitised by TBO to killing by HeNe laser light and that killing depends on the light energy dose and sensitiser concentration.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-42-1-62
1995-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/42/1/medmicro-42-1-62.html?itemId=/content/journal/jmm/10.1099/00222615-42-1-62&mimeType=html&fmt=ahah

References

  1. Cookson B. D. MRSA: Major problem or minor threat?. J Med Microbiol 1993; 38:309–310
    [Google Scholar]
  2. Duckworth G. J. Diagnosis and management of methicillin resistant Staphylococcus aureus infection. BMJ 1993; 307:1049–1052
    [Google Scholar]
  3. Cookson B. D., Farrelly H., Stapleton P., Garvey R. P. J., Price M. R. Transferable resistance to triclosan in MRSA. Lancet 1991; 337:1548–1549
    [Google Scholar]
  4. Grosserode M. H., Wenzel R. P. The continuing importance of staphylococci as major hospital pathogens. J Hosp Infect 1991; 19: Supp B 3–17
    [Google Scholar]
  5. Hill R. L. R., Duckworth G. J., Casewell M. W. Elimination of nasal carriage of methicillin-resistant Staphylolococcus aureus with mupirocin during a hospital outbreak. J Antimicrob Chemother 1988; 22:377–384
    [Google Scholar]
  6. Janssen D. A., Zarins L. T., Schaberg D. R., Bradley S. F., Terpenning M. S., Kauffman C. A. Detection and characterization of mupirocin resistance in Staphylococcus aureus. Antimicrob Ag Chemother 1993; 37:2003–2006
    [Google Scholar]
  7. Wilson M., Pratten J. Sensitisation of Staphylococcus aureus to killing by low-power laser light. J Antimicrob Chemother 1994; 33:619–624
    [Google Scholar]
  8. Mathews M. M., Sistrom W. R. The function of the carotenoid pigments of Sarcina lutea. Arch Mikrobiol 1960; 35:139–146
    [Google Scholar]
  9. MacMillan J. D., Maxwell W. A., Chichester C. O. Lethal photo sensitization of microorganisms with light from a continuous-wave gas laser. Photochem Photobiol 1966; 5:555–565
    [Google Scholar]
  10. Wilson M., Dobson J., Sarkar S. Sensitization of periodonto-pathogenic bacteria to killing by light from a low-power laser. Oral Microbiol Immunol 1993; 8:182–187
    [Google Scholar]
  11. Wilson M. Photolysis of oral bacteria and its potential use in the treatment of caries and periodontal disease. J Appl Bacteriol 1993; 75:299–306
    [Google Scholar]
  12. Bertoloni G., Dall’Acqua M., Vazzoler M., Salvato B., Jori G. Bacterial and yeast cells as models for studying haemato-porphyrin photosensitisation. In Andreoni A., Cubeddu R. (eds) Porphyrins in tumour phototherapy New York: Plenum; 1983177–183
    [Google Scholar]
  13. Tuite E. M., Kelly J. M. Photochemical interactions of methylene blue and analogues with DNA and other biological substrates. J Photochem Photobiol B: Biol 1993; 21:103–124
    [Google Scholar]
  14. Williams J. L., Stamp J., Devonshire R., Fowler G. J. S. Methylene blue and the photodynamic therapy of superficial bladder cancer. J Photochem Photobiol B: Biol 1989; 4:229–232
    [Google Scholar]
  15. Konig K., Bockhorn V., Dietel W., Schubert M. Photo chemotherapy of animal tumors with the photosensitizer methylene blue using a krypton laser. J Cancer Res Clin Oncol 1987; 113:301–303
    [Google Scholar]
  16. Konig K., Meyer H. Photodynamically induced inactivation of Propionibacterium acnes using the photosensitizer methylene blue and red light. Dermatol Monatsschr 1992; 178:297–300
    [Google Scholar]
  17. Friedberg J. S., Tompkins R. G., Rakestraw S. L., Warren S. W., Fischman A. J., Yarmush M. L. Antibody-targeted photolysis. Bacteriocidal effects of Sn (IV) chlorin e6-dextran-monoclonal antibody conjugates. Ann NY Acad Sci 1991; 618:383–393
    [Google Scholar]
  18. Moisenbocker M., Masuya H., Shimazu H., Miyawaki T., Ichimori Y., Sugawara T. Photoactive methylene blue dye derivatives suitable for coupling to proteins. Photochem Photobiol 1993; 58:648–652
    [Google Scholar]
  19. Tuveson R. W., Larson R. A., Kagan J. Role of cloned carotenoid genes expressed in Escherichia coli in protecting against inactivation by near-UV light and specific phototoxic molecules. J Bacteriol 1988; 170:4675–4680
    [Google Scholar]
  20. Paardekooper M., Van den Broek P. J. A., De Bruijne A. W., Elferink J. G. R., Dubbelman T. M., A R., Van Steveninck J. Photodynamic treatment of yeast cells with the dye toluidine blue: all-or-none loss of plasma membrane barrier properties. Biochim Biophys Acta 1992; 1108:86–90
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-42-1-62
Loading
/content/journal/jmm/10.1099/00222615-42-1-62
Loading

Data & Media loading...

Most cited Most Cited RSS feed