1887

Abstract

Surmmary

The non-immunoglobulin component of human milk responsible for the inhibition of cell adhesion (haemagglutination) mediated by colonisation factor antigen 1 (CFA1) was determined by chromatographic fractionation of human whey proteins with Sephadex G-200, DEAE cellulose and heparin-sepharose. Pure free secretory component (fSC) and pure lactoferrin (Lf) were isolated and both compounds inhibited the haemagglutination induced by CFA1. The lowest concentrations of purified fSC and Lf able to inhibit the haemagglutination induced by strain TR50/3 CFA1 were 0.06 mg/ml and 0.1 mg/ml respectively. Commercially available lactoferrin from human milk and transferrin from human serum, which has a great structural analogy to lactoferrin, also inhibited the haemagglutination. The lowest concentrations of the commercial lactoferrin and transferrin able to inhibit the haemagglutination induced by TR50/3 CFA1 were 0.03 mg/ml and 0.4mg/ml, respectively. These results indicate that fSC and Lf may be important non-specific defence factors against enterotoxigenic infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-42-1-3
1995-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/42/1/medmicro-42-1-3.html?itemId=/content/journal/jmm/10.1099/00222615-42-1-3&mimeType=html&fmt=ahah

References

  1. Black R. E., Lopez de Romana G., Brown K. H., Bravo N., Bazalar O. G., Kanashiro H. C. Incidence and etiology of infantile diarrhea and major routes of transmission in Huascar, Peru. Am J Epidemiol 1989; 129:785–799
    [Google Scholar]
  2. Black R. E., Merson M. H., Rahman A. S. M. M. A two-year study of bacterial, viral, and parasitic agents associated with diarrhea in Bangladesh. J Infect Dis 1980; 142:660–664
    [Google Scholar]
  3. Guerrant R. L., Kirchhoff L. V., Shields D. S. Prospective study of diarrheal illnesses in Northeastern Brazil: patterns of disease, nutritional impact, etiologies, and risk factor. J Infect Dis 1983; 148:986–997
    [Google Scholar]
  4. Levine M. M. Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive, entero-hemorrhagic, and enteroadherent. J Infect Dis 1987; 155:377–389
    [Google Scholar]
  5. Changchawalit S., Echeverria P., Taylor D. N. Colonization factors associated with enterotoxigenic Escherichia coli isolated in Thailand. Infect Immun 1984; 45:525–527
    [Google Scholar]
  6. Lopez-Vidal Y., Calva J. J., Trujillo A. Enterotoxins and adhesins of enterotoxigenic Escherichia coli: are they risk factors for acute diarrhea in the community?. J Infect Dis 1990; 162:442–447
    [Google Scholar]
  7. Kovar M. G., Serdula M. K., Marks J. S., Fraser D. W. Review of the epidemiologic evidence for an association between infant feeding and infant health. Pediatrics 1984; 74:615–638
    [Google Scholar]
  8. Young H. B., Buckley A. E., Hamza M., Mandarano C. Milk and lactation: some social and developmental correlates among 1000 infants. Pediatrics 1982; 69:169–175
    [Google Scholar]
  9. Cravioto A., Tello A., Villafan H., Ruiz J., Vedovo S., Neeser J. R. Inhibition of localized adhesion of enteropathogenic Escherichia coli to HEp-2 cells by immunoglobulin and oligosaccharide fractions of human colostrum and breast milk. J Infect Dis 1991; 163:1247–1255
    [Google Scholar]
  10. Cruz J. R., Gil L., Cano F., Caceres P., Pareja G. Breast milk anti-Escherichia coli heat-labile toxin IgA antibodies protect against toxin-induced infantile diarrhea. Acta Paediatr Scand 1988; 77:658–662
    [Google Scholar]
  11. Glass R. I., Svennerholm A. M., Stoll B. J. Protection against cholera in breast-fed children by antibodies in breast milk. N Engl J Med 1983; 308:1389–1392
    [Google Scholar]
  12. Brock J. H. Lactoferrin in human milk: its role in iron absorption and protection against enteric infection in the newborn infant. Arch Dis Child 1980; 55:417–421
    [Google Scholar]
  13. Bullen J. J., Rogers H. J., Leigh L. Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. BMJ 1972; 1:69–75
    [Google Scholar]
  14. Jelliffe D. B., Jelliffe E. P. F. Protection and hazards. In Jelliffe D. B., Jelliffe E. P. F. (eds) Human milk in the modem world. Psychosocial, nutritional and economic significance Oxford: Oxford University Press; 197884–112
    [Google Scholar]
  15. Newburg D. S., Pickering L. K., McCluer R. H., Cleary T. G. Fucosylated oligosaccharides of human milk protect suckling mice from heat-stable enterotoxin of Escherichia coli. J Infect Dis 1990; 162:1075–1080
    [Google Scholar]
  16. Reiter B., Oram J. D. Bacterial inhibitors in milk and other biological fluids. Nature 1967; 216:328–330
    [Google Scholar]
  17. Griffiths E., Humphreys J. Bacteriostatic effect of human milk and bovine colostrum on Escherichia coli: importance of bicarbonate. Infect Immun 1977; 15:396–401
    [Google Scholar]
  18. Oram J. D., Reiter B. Inhibition of bacteria by lactoferrin and other iron-chelating agents. Biochim Biophys Acta 1968; 170:351–365
    [Google Scholar]
  19. Lee B. C., Schryvers A. B. Specificity of the lactoferrin and transferrin receptors in Neisseria gonorrhoeae. Mol Microbiol 1988; 2:827–829
    [Google Scholar]
  20. Naidu A. S., Andersson M., Forsgren A. Identification of a human lactoferrin-binding protein in Staphylococcus aureus. J Med Microbiol 1992; 36:177–183
    [Google Scholar]
  21. Schryvers A. B. Identification of the transferrin-and lactoferrin-binding proteins in Haemophilus influenzae. J Med Microbiol 1989; 29:121–130
    [Google Scholar]
  22. Tigyi Z., Kishore A. R., Maeland J. A., Forsgren A., Naidu A. S. Lactoferrin-binding proteins in Shigella flexneri. Infect Immun 1992; 60:2619–2626
    [Google Scholar]
  23. Dalamastri C., Valenti P., Visca P., Orsi N. Enhanced antimicrobial activity of lactoferrin by binding to the bacterial surface. Microbiologica 1978; 11:225–230
    [Google Scholar]
  24. Naidu S. S., Erdei J., Czirok E. Specific binding of lactoferrin to Escherichia coli isolated from human intestinal infections. APMIS 1991; 99:1142–1150
    [Google Scholar]
  25. Andersson B., Porras O., Hanson L. A., Lagergard T. S., Svanborg-Eden C. Inhibition of attachment of Streptococcus pneumoniae and Haemophilus influenzae by human milk and receptor oligosaccharides. J Infect Dis 1986; 153:232–237
    [Google Scholar]
  26. Ashkenazi S., Mirelman D. Nonimmunoglobulin fraction of human milk inhibits the adherence of certain enterotoxigenic Escherichia coli strains to guinea pig intestinal tract. Pediatr Res 1987; 22:130–134
    [Google Scholar]
  27. Holmgren J., Svennerholm A.-M., Lindblad M. Receptor-like glycocompounds in human milk that inhibit classical and El Tor Vibrio cholerae cell adherence (hemagglutination). Infect Immun 1983; 39:147–154
    [Google Scholar]
  28. Aisen P., Listowsky I. Iron transport and storage proteins. Anna Rev Biochem 1980; 49:357–393
    [Google Scholar]
  29. Brandtzaeg P. Human secretory immunoglobulins. 4. Quantitation of free secretory piece. Acta Path Microbiol Scand 1971 Section B 79:189–203
    [Google Scholar]
  30. Mizoguchi A., Mizuochi T., Kobata A. Structures of the carbohydrate moieties of secretory component purified from human milk. J Biol Chem 1982; 257:9612–9621
    [Google Scholar]
  31. Chintalacharuvu K. R., Piskurich J. F., Lamm M. E., Kaetzel C. S. Cell polarity regulates the release of secretory component, the epithelial receptor for polymeric immunoglobulins, from the surface of HT-29 colon carcinoma cells. J Cell Physiol 1991; 148:35–47
    [Google Scholar]
  32. Mestecky J., McGhee J. R., Immunoglobulin A. (IgA):molecular and cellular interactions involved in IgA biosynthesis and immune response. Adv Immunol 1987; 40:153–245
    [Google Scholar]
  33. Mostov K. E., Deitcher D. L. Polymeric immunoglobulin receptor expressed in MDCK cells transcytoses IgA. Cell 1986; 46:613–621
    [Google Scholar]
  34. Mestecky J., Kilian M., Immunoglobulin A. (IgA). Methods Enzymol 1985; 116:37–75
    [Google Scholar]
  35. Bradford M. M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248–254
    [Google Scholar]
  36. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  37. Blum H., Beier H., Gross H. J. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 1987; 8:93–99
    [Google Scholar]
  38. O’Farrell P. Z., Goodman H., O’Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell 1977; 12:1133–1141
    [Google Scholar]
  39. Blackberg L., Hemell O. Isolation of lactoferrin from human whey by a single chromatographic step. FEBS Lett 1980; 109:180–183
    [Google Scholar]
  40. Evans D. G., Evans D. J., Tjoa W. Hemagglutination of human group A erythrocytes by enterotoxigenic Escherichia coli isolated from adults with diarrhea: correlation with colonization factor. Infect Immun 1977; 18:330–337
    [Google Scholar]
  41. Holmgren J., Svennerholm A. M., Ahren C. Nonimmunoglobulin fraction of human milk inhibits bacterial adhesion (hemagglutination) and enterotoxin binding of Escherichia coli and Vibrio cholerae. Infect Immun 1981; 33:136–141
    [Google Scholar]
  42. Evans D. G., Evans D. J. New surface-associated heat-labile colonization factor antigen (CFA/II) produced by enterotoxigenic Escherichia coli of serogroups 06 and 08. Infect Immun 1978; 21:638–647
    [Google Scholar]
  43. Malamud D., Drysdale J. W. Isoelectric points of proteins: a table. Anal Biochem 1978; 86:620–647
    [Google Scholar]
  44. Roberts T. K., Masson P. L., Heremans J. F. Heterogeneity of human lactoferrin. In Bratanov K., Edwards R. G., Vulchanov V. H., Dikov V., Somlev B. (eds) Immunology of reproduction Sofia: Bulgarian Academy of Sciences Press; 1973706
    [Google Scholar]
  45. Ellison R. T., Giehl T. J., LaForce F. M. Damage of the outer membrane of enteric gram-negative bacteria by lactoferrin and transferrin. Infect Immun 1988; 56:2774–2781
    [Google Scholar]
  46. Coppa G. V., Catassi C., Felici L., Gabrielli O., Giorgi P. L. Acid glycohydrolases in human colostrum. In Proceedings of XX Annual Meeting of European Society for Paediatric Gastroenterology and Nutrition (ESPGAN) Lisbon, Portugal: 198790
    [Google Scholar]
  47. Izhar M., Nuchamowitz Y., Mirelman D. Adherence of Shigella flexneri to guinea-pig intestinal cells is mediated by a mucosal adhesin. Infect Immun 1982; 35:1110–1118
    [Google Scholar]
  48. Buts J. P., Bemasconi P., Vaerman J. P., Dive C. Stimulation of secretory IgA and secretory component of immunoglobulins in small intestine of rats treated with Saccharo-myces boulardii. Dig Dis Sci 1990; 35:251–256
    [Google Scholar]
  49. Nussinson E., Lahav M., Berebi A., Estrov Z., Zur S., Resnitzky P. Secretory piece and IgA deficiency in a patient with Waldenstrom’s macroglobulinemia. Am J Gastroenterol 1986; 81:995–998
    [Google Scholar]
  50. Ahnen D. A., Brown W. R., Kloppel T. M. Secretory component: the polymeric immunoglobulin receptor. What’s in it for the gastroenterologist and hematologist?. Gastroenterology 1985; 89:667–682
    [Google Scholar]
  51. Hekman A. Association of lactoferrin with other proteins, as demonstrated by changes in electrophoretic mobility. Biochim Biophys Acta 1971; 251:380–387
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-42-1-3
Loading
/content/journal/jmm/10.1099/00222615-42-1-3
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error