1887

Abstract

Surmmary

is isolated from the intestinal tracts of > 50% of healthy infants. The mechanism by which intestinal colonisation of infants by toxigenic is generally asymptomatic is unknown but may reflect the presence in human milk of neutralising activity against toxin A. On this basis, the ability of human milk to inhibit the binding of toxin A to a purified hamster brush border membrane receptor was determined. Ten milk samples from healthy volunteers in various stages of lactation inhibited the binding of toxin A to the receptor by an average of 90 %. Heating and dialysis did not significantly alter the inhibitory activity of any of the milk samples. Human milk protected adult hamsters against a lethal challenge with toxin A but had no effect on the cytotoxic activity of the toxin. SDS-PAGE and ligand blot analyses showed that there were at least four distinct factors in human milk that specifically bound toxin A. Thiophilic adsorption chromatography was used to separate immunoglobulin from non-immunoglobulin components of human milk. IgA was the only immunoglobulin detected in human milk and > 90 % of this immunoglobulin was recovered after purification by thiophilic adsorption. Both the unbound non-immunoglobulin and bound immunoglobulin fractions of human milk inhibited the binding of toxin A to the purified receptor. These results suggest that human milk may be important in protecting infants against -associated intestinal disease.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-42-1-10
1995-01-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/42/1/medmicro-42-1-10.html?itemId=/content/journal/jmm/10.1099/00222615-42-1-10&mimeType=html&fmt=ahah

References

  1. Lyerly D. M., Lockwood D. E., Richardson S. H., Wilkins T. D. Biological activities of toxins A and B of Clostridium difficile. Infect Immun 1982; 35:1147–1150
    [Google Scholar]
  2. Donta S. T. Mechanism of action of Clostridium difficile toxins. In Rolfe R. D., Finegold S. M. (eds) Clostridium difficile-, its role in intestinal disease San Diego: Academic Press, Inc; 1988169–181
    [Google Scholar]
  3. Lyerly D. M., Wilkins T. D. Purification and properties of toxins A and B of Clostridium difficile. In Rolfe R. D., Finegold S. M. (eds) Clostridium difficile: its role in intestinal disease San Diego: Academic Press, Inc; 1988145–167
    [Google Scholar]
  4. Mitchell T. J., Ketley J. K., Haslam S. C. Effect of toxin A and B of Clostridium difficile on rabbit ileum and colon. Gut 1986; 27:78–85
    [Google Scholar]
  5. Kofsky P., Rosen L., Reed J., Tolmie M., Ufberg D. Clostridium difficile—a common and costly colitis. Dis Colon Rectum 1991; 34:244–248
    [Google Scholar]
  6. George W. L. Antimicrobial agent-associated diarrhea in adult humans. In Rolfe R. D., Finegold S. M. (eds) Clostridium difficile: its role in intestinal disease San Diego: Academic Press, Inc; 198831–44
    [Google Scholar]
  7. Cooperstock M. S., Steffen E., Yolken R., Onderdonk A. Clostridium difficile in normal infants and sudden infant death syndrome: an association with infant formula feeding. Pediatrics 1982; 70:91–95
    [Google Scholar]
  8. Stark P. L., Lee A., Parsonage B. D. Colonization of the large bowel by Clostridium difficile in healthy infants: quantitative study. Infect Immun 1982; 35:895–899
    [Google Scholar]
  9. Rolfe R. D. Asymptomatic intestinal colonization by Clostridium difficile. In Rolfe R. D., Finegold S. M. (eds) Clostridium difficile: its role in intestinal disease San Diego: Academic Press, Inc; 1988201–225
    [Google Scholar]
  10. Qualman S. J., Petrie M., Karmali M. A., Smith C. R., Hamilton S. R. Clostridium difficile invasion and toxin circulation in fatal pediatric pseudomembranous colitis. Am J Clin Pathol 1990; 94:410–416
    [Google Scholar]
  11. Cooperstock M. Clostridium difficile in infants and children. In Rolfe R. D., Finegold S. M. (eds) Clostridium difficile: its role in intestinal disease San Diego: Academic Press, Inc; 198845–64
    [Google Scholar]
  12. Mardh D. A., Helin I., Colleen I., Oberg M., Holst E. Clostridium difficile toxin in faecal specimens of healthy children and children with diarrhoea. Acta Paediatr Scand 1982; 71:275–278
    [Google Scholar]
  13. Cunningham A. S., Jelliffe B. D., Jelliffe E. F. P. Breast-feeding and health in the 1980s: a global epidemiologic review. J Pediatr 1991; 118:659–666
    [Google Scholar]
  14. Hanson L. A., Winberg J. Breast milk and defence against infection in the newborn. Arch Dis Child 1972; 47:845–848
    [Google Scholar]
  15. Hayani K. C., Guerrero M. L., Morrow A. L. Concentration of milk secretory immunoglobulin A against Shigella virulence plasmid-associated antigens as a predictor of symptom status in Shigella-infected breast-fed infants. J Pediatr 1992; 121:852–856
    [Google Scholar]
  16. Sabin A. B., Fieldsteel A. H. Antipoliomyelitic activity of human and bovine colostrum and milk. Pediatrics 1962; 29:105–115
    [Google Scholar]
  17. Glass R. I., Stoll B. J. The protective effect of human milk against diarrhea: a review of studies from Bangladesh. Acta Paediatr Scand 1989; 351: Suppl 131–136
    [Google Scholar]
  18. Duffy L. C., Riepenhoff-Talty M., Byers T. E. Modulation of rotavirus enteritis during breast-feeding. Implications on alterations in the intestinal bacterial flora. Am J Dis Child 1986; 140:1164–1168
    [Google Scholar]
  19. Pickering L. K., Kohl S. Human milk humoral immunity and infant defense mechanism. In Howell R. R., Morriss F. H., Pickering L. K. (eds) Human milk in infant nutrition and health Springfield: IL, Charles C. Thomas; 1986123–140
    [Google Scholar]
  20. Laegreid A., Otnaess A. B., Fuglesang J. Human and bovine milk: comparison of ganglioside composition and enterotoxin-inhibitory activity. Pediatr Res 1986; 20:416–421
    [Google Scholar]
  21. Gronberg G., Lipniunas P., Lundgren T., Lindh F. Nilsson B. Structural analysis of five new monosialylated oligosaccharides from human milk. Arch Biochem Biophys 1992; 296:597–610
    [Google Scholar]
  22. Viverage D., Grimmonprez L., Cassanas G., Bardet L., Bonnet H., Soliere M. Variations of lactose and oligosaccharides in milk from women of blood types secretor A or H, secretor Lewis, and secretor H/nonsecretor Lewis during the course of lactation. Ann Nutr Metab 1985; 29:1–11
    [Google Scholar]
  23. Kobata A., Yamashita K., Tachibana Y. Oligosaccharides from human milk. Methods Enzymol 1978; 50:216–221
    [Google Scholar]
  24. Egee H., Dell A., Von Nicolai H. Fucose containing oligo saccharides from human milk. I. Separation and identification of new constituents. Arch Biochem Biophys 1983; 224:235–253
    [Google Scholar]
  25. Kim P. H., Iaconis J. P., Rolfe R. D. Immunization of adult hamsters against Clostridium difficile-associated ileocecitis and transfer of protection to infant hamsters. Infect Immun 1987; 55:2984–2992
    [Google Scholar]
  26. Rolfe R. D. Binding kinetics of Clostridium difficile toxins A and B to intestinal brush border membranes from infant and adult hamsters. Infect Immun 1991; 59:1223–1230
    [Google Scholar]
  27. Rolfe R. D., Song W. Purification of a functional receptor for Clostridium difficile toxin A from intestinal brush border membranes of infant hamsters. Clin Infect Dis 1993; 16: Suppl 4S219–S227
    [Google Scholar]
  28. Davis B. J. Disc electrophoresis. II. Methods and application to human serum proteins. Ann NY Acad Sci 1965; 121:404–427
    [Google Scholar]
  29. Mancini G., Carbonara O. A., Heremans J. F. Immunochemical quantitation of antigens by single radial immunodiffusion. Int J Immunochem 1965; 2:235–254
    [Google Scholar]
  30. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  31. Rolfe R. D., Finegold S. M. Purification and characterization of Clostridium difficile toxin. Infect Immun 1979; 25:191–201
    [Google Scholar]
  32. Towbin H., Staehehn T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 1979; 76:4350–4354
    [Google Scholar]
  33. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with Folin phenol reagent. J Biol Chem 1951; 193:265–275
    [Google Scholar]
  34. Dove C. H., Wang S. Z., Price S. B. Molecular characterization of the Clostridium difficile toxin A gene. Infect Immun 1990; 58:480–488
    [Google Scholar]
  35. Goldman A. S. The immune system of human milk: anti microbial, antiinflammatory and immunomodulating properties. Pediatr Infect Dis J 1993; 12:664–672
    [Google Scholar]
  36. Glass R. I., Svennerholm A. M., Stoll B. J. Protection against cholera in breast-fed children by antibodies in breast milk. N Engl J Med 1983; 308:1389–1392
    [Google Scholar]
  37. Larsen S. A., Homer D. R. Relation of breast versus bottle feeding to hospitalization for gastroenteritis in a middle-class US population. J Pediatr 1978; 92:417–418
    [Google Scholar]
  38. Rolfe R. D., Iaconis J. P. Intestinal colonization of infant hamsters with Clostridium difficile. Infect Immun 1983; 42:480–486
    [Google Scholar]
  39. Krivan H. C., Clark G. F., Smith D. F., Wilkins T. D. Cell surface binding site for Clostridium difficile enterotoxin: evidence for a glycoconjugate containing the sequence Galal-3Gall-4GlcNAc. Infect Immun 1986; 53:573–581
    [Google Scholar]
  40. Pothoulakis C., LaMont J. T., Eglow R. Characterization of rabbit ileal receptors for Clostridium difficile toxin A. Evidence for a receptor-coupled G protein. J Clin Invest 1991; 88:119–125
    [Google Scholar]
  41. Clark G. F., Krivan H. C., Wilkins T. D., Smith D. F. Toxin A from Clostridium difficile binds to rabbit erythrocyte glycolipids with terminal Gala 1-3Galβl-4GlcNAc sequences. Arch Biochem Biophys 1987; 257:217–229
    [Google Scholar]
  42. Tucker K. D., Carrig P. E., Wilkins T. D. Toxin A of Clostridium difficile is a potent cytotoxin. J Clin Microbiol 1990; 28:869–871
    [Google Scholar]
  43. Lyerly D. M., Johnson J. L., Frey S. M., Wilkins T. D. Vaccination against lethal Clostridium difficile enterocolitis with a nontoxic recombinant peptide of toxin A. Curr Microbiol 1990; 21:29–32
    [Google Scholar]
  44. Frey S. M., Wilkins T. D. Localization of two epitopes recognized by monoclonal antibody PCG-4 on Clostridium difficile toxin A. Infect Immun 1992; 60:2488–2492
    [Google Scholar]
  45. Wilkins T. D., Tucker K. D. Clostridium difficile toxin A (entero-toxin) uses Galal-3Galβl-4GlcNAc as a functional receptor. Microecol Ther 1989; 19:225–227
    [Google Scholar]
  46. Kim K., Pickering L. K., DuPont H. L., Sullivan N., Wilkins T. In vitro and in vivo neutralizing activity of human colostrum and milk against purified toxins A and B of Clostridium difficile. J Infect Dis 1984; 150:57–62
    [Google Scholar]
  47. Lyerly D. M., Bostwick E. F., Binion S. B., Wilkins T. D. Passive immunization of hamsters against disease caused by Clostridium difficile by use of bovine immunoglobulin G concentrate. Infect Immun 1991; 59:2215–2218
    [Google Scholar]
  48. Wada N., Nishida N., Iwaki S. Neutralizing activity against Clostridium difficile toxin in the supernatants of cultured colostral cells. Infect Immun 1980; 29:545–550
    [Google Scholar]
  49. Hutchens T. W., Magnuson J. S., Yip T. T. Secretory IgA, IgG, and IgM immunoglobulins isolated simultaneously from colostral whey by selective thiophilic adsorption. J Immunol Methods 1990; 128:89–99
    [Google Scholar]
  50. Porath J., Maisano F., Belew M. Thiophilic adsorption—a new method for protein fractionation. FEBS Lett 1985; 185:306–310
    [Google Scholar]
  51. Kelly C. P., Pothoulakis C., Orellana J., LaMont J. T. Human colonic aspirates containing immunoglobulin A antibody to Clostridium difficile toxin A inhibit toxin A-receptor binding. Gastroenterology 1992; 102:35–40
    [Google Scholar]
  52. Laegreid A., Kolsto Otnaess A. B. Trace amounts of ganglioside GM1 in human milk inhibit enterotoxins from Vibrio cholerae and Escherichia coli. Life Sci 1987; 40:55–62
    [Google Scholar]
  53. Newburg D. S., Pickering L. K., McCluer R. H., Cleary T. G. Fuco-sylated oligosaccharides of human milk protect suckling mice from heat-stable enterotoxin of Escherichia coli. J Infect Dis 1990; 162:1075–1080
    [Google Scholar]
  54. Hanson L. A., Ahlstedt S., Andersson B. Protective factors in milk and the development of the immune system. Pediatrics 1985; 75:172–176
    [Google Scholar]
  55. Cleary T. G., Chambers J. P., Pickering L. K. Protection of suckling mice from heat-stable enterotoxin of Escherichia coli by infant formulas. J Pediatr Gastroenterol Nutr 1985; 4:125–127
    [Google Scholar]
  56. Holmgren J., Svennerholm A. M., Åhrén C. Nonimmunoglobulin fraction of human milk inhibits bacterial adhesion (hemagglutination) and enterotoxin binding of Escherichia coli and Vibrio cholerae. Infect Immun 1981; 33:136–141
    [Google Scholar]
  57. Otnaess A. B., Svennerholm A. M. Non-immunoglobulin fraction of human milk protects rabbits against enterotoxin-induced intestinal fluid secretion. Infect Immun 1982; 35:738–740
    [Google Scholar]
  58. Otnaess A.-B., Laegreid A., Ertresvag K. Inhibition of enterotoxin from Escherichia coli and Vibrio cholerae by gangli-osides from human milk. Infect Immun 1983; 40:563–569
    [Google Scholar]
  59. Tucker K. D. Wilkins TD. Toxin A of Clostridium difficile binds to the human carbohydrate antigens I, X, and Y. Infect Immun 1991; 59:73–78
    [Google Scholar]
  60. Holgersson J., Stromberg N., Breimer M. E. Glycolipids of human large intestine: difference in glycolipid expression related to anatomical localization, epithelial/non-epithelial tissue and the ABO, Le and Se phenotypes of the donors. Biochimie 1988; 70:1565–1574
    [Google Scholar]
  61. McKibbin J. M., Spencer W. A., Smith E. L. Lewis blood group fucolipids and their isomers from human and canine intestine. J Biol Chem 1982; 257:755–760
    [Google Scholar]
  62. Sakamoto J., Furukawa K., Cordon-Cardo C. Expression of Lewisa, Lewisb, X, and Y blood group antigens in human colonic tumors and normal tissue and in human tumor-derived cell lines. Cancer Res 1986; 46:1553–1561
    [Google Scholar]
  63. Brassart D., Woltz A., Golliard M., Neeser J. R. In vitro inhibition of adhesion of Candida albicans clinical isolates to human buccal epithelial cells by Fucal-2Galβ-bearing complex carbohydrates. Infect Immun 1991; 59:1605–1613
    [Google Scholar]
  64. Mizoguchi A. T., Mizuochi T., Kobata A. Structures of the carbohydrate moieties of secretory component purified from human milk. J Biol Chem 1982; 257:9612–9621
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-42-1-10
Loading
/content/journal/jmm/10.1099/00222615-42-1-10
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error