Three consecutive isolates of were obtained from the blood cultures of a hospitalised patient who was receiving antibiotic therapy. The initial isolate possessed an inducible cephalosporinase and was susceptible to third-generation cephalosporins. After ceftazidime treatment, a second isolate resistant to this antibiotic and characterised by stable overproduction of the chromosomal β-lactamase was obtained, and therapy was altered to a new combination which included imipenem. During this course of treatment, a strain of was isolated that was resistant to virtually all β-lactam agents including imipenem. Comparison of biotypes and ribotyping profiles indicated that the three isolates were probably derived from a single strain which had undergone several mutations during antibiotic exposure. Examination of outer-membrane protein (OMP) preparations and lipopolysaccharide (LPS) profiles showed that the imipenem-resistant isolate lacked a major OMP and high molecular mass LPS. Furthermore, this isolate displayed reduced permeability to cephaloridine compared with the initial isolate. The introduction of a plasmid carrying a wild-type allele prevented cephalosporinase production and restored β-lactam susceptibility in the imipenem-resistant isolate. It was concluded that stable derepression of class-I β-lactamase production and reduced permeability are both required for expression of imipenem resistance in , and that previous exposure to cephalosporins may encourage the emergence of such strains.


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error