1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-40-6-375
1994-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/40/6/medmicro-40-6-375.html?itemId=/content/journal/jmm/10.1099/00222615-40-6-375&mimeType=html&fmt=ahah

References

  1. Johnson AP, Uttley AHC, Woodford N, George RC. Resistance to vancomycin and teicoplanin: an emerging clinical problem. Clin Microbiol Rev 1990; 3:280–291
    [Google Scholar]
  2. Woodford N, Johnson AP, George RC. Detection of glyco-peptide resistance in clinical isolates of gram-positive bacteria. J Antimicrob Chemother 1991; 28:483–486
    [Google Scholar]
  3. Woodford N, Johnson AP, George RC. Mechanisms and genetics of antimicrobial resistance in Enterococcus spp. PHLS Microbiol Digest 1992; 9:151–154
    [Google Scholar]
  4. Dutka-Malen S, Molinas C, Arthur M, Courvalin P. The Vana glycopeptide resistant protein is related to D-alanyl-D-alanine ligase cell wall biosynthesis enzymes. Mol Gen Genet 1990; 224:364–372
    [Google Scholar]
  5. Evers S, Sahm DF, Courvalin P. The vanB gene of vancomycin resistant Enterococcus faecalis V583 is structurally related to genes encoding D-Ala :D-Ala ligases and glycopeptide resistance proteins VanA and VanC. Gene 1993; 124:143–144
    [Google Scholar]
  6. Dutka-Malen S, Molinas C, Arthur M, Courvalin P. Sequence of the vanC gene of Enterococcus gallinarum BM4174 encoding a D-alanine :D-alanine ligase-related protein necessary for vancomycin resistance. Gene 1992; 112:53–58
    [Google Scholar]
  7. Messer J, Reynolds PE. Modified peptidoglycan precursors produced by glycopeptide-resistant enterococci. FEMS Microbiol Letts 1992; 94:195–200
    [Google Scholar]
  8. Arthur M, Molinas C, Depardieu F, Courvalin P. Characterization of Tn1546 a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol 1993; 175:117–127
    [Google Scholar]
  9. Uttley AHC, George RC, Naidoo J et al. High-level vancomycin-resistant enterococci causing hospital infections. Epidemiol Infect 1989; 103:173–181
    [Google Scholar]
  10. Fraimow H, Venuti E, Dean J. Mechanism of vancomycin dependence of a vancomycin-requiring clinical Entero-coccus faecalis isolate. Program and Abstracts of the 33rd Interscience Conference on Antimicrobial Agents and Chemotherapy 1993; 141117
    [Google Scholar]
  11. Green M, Schlaes JH, Barbadora K, Schlaes DM. Vancomycin dependent Enterococcus faecium: a preliminary characterization. Program and Abstracts of the 33rd Interscience Conference on Antimicrobial Agents and Chemotherapy 1993; 141118
    [Google Scholar]
  12. Kaatz GW, Seo SM, Dorman NJ, Lerner SA. Emergence of teicoplanin resistance during therapy of Staphylococcus aureus endocarditis. J Infect Dis 1990; 162:103–108
    [Google Scholar]
  13. Biavasco F, Giovanetti E, Montanari MP, Lupidi R, Varaldo PE. Development of in-vitro resistance to glycopeptide antibiotics: assessment in staphylococci of different species. J Antimicrob Chemother 1991; 27:71–79
    [Google Scholar]
  14. Daum RS, Gupta S, Sabbagh R, Milewski WM. Characterization of Staphylococcus aureus isolates with decreased susceptibility to vancomycin and teicoplanin : isolation and purification of a constitutively produced protein associated with decreased susceptibility. J Infect Dis 1992; 166:1066–1072
    [Google Scholar]
  15. Sanyal D, Greenwood D. An electronmicroscope study of glycopeptide antibiotic-resistant strains of Staphylococcus epidermis. J Med Microbiol 1993; 39:204–210
    [Google Scholar]
  16. Shlaes DM, Shlaes JH, Vincent S, Etter L, Fey PD, Goering RV. Teicoplanin-resistant Staphylococcus aureus expresses a novel membrane protein and increases expression of penicillin-binding protein 2 complex. Antimicrob Agents Chemother 1993; 37:2432–2437
    [Google Scholar]
  17. O'Hare MD, Reynolds PE. Novel membrane proteins present in teicoplanin-resistant, vancomycin-sensitive, coagulase-negative Staphylococcus spp. J Antimicrob Chemother 1992; 30:753–768
    [Google Scholar]
  18. Sanyal D, Johnson AP, George RC, Edwards R, Greenwood D. In vitro characteristics of glycopeptide resistant strains of Staphylococcus epidermidis isolated from patients on CAPD. J Antimicrob Chemother 1993; 32:267–278
    [Google Scholar]
  19. Noble WC, Virani Z, Cree RGA. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol Letts 1992; 93:195–198
    [Google Scholar]
  20. Huygens F. Vancomycin binding to cells walls of non-streptococcal vancomycin-resistant bacteria. J Antimicrob Chemother 1993; 32:551–558
    [Google Scholar]
  21. Bugg TDH, Wright GD, Dutka-Malen S, Arthur M, Courvalin P, Walsh CT. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147 biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 1991; 30:10408–10415
    [Google Scholar]
  22. Mackey T, Lejeune V, Janssens M, Wauters G. Identification of vancomycin-resistant lactic bacteria isolated from humans. J Clin Microbiol 1993; 31:2499–2501
    [Google Scholar]
  23. Reed C, Efstratiou A, Morrison D, Woodford N. Glycopeptide resistant Gemella haemolysans from blood. Lancet 1993; 342:927–928
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-40-6-375
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error