1887

Abstract

Summary

The immunological response of cystic fibrosis (CF) patients to lipopolysaccharide (LPS) antigens of was investigated. Enzyme-linked immunosorbent assays (ELISA) with either whole cells or extracted core LPS from a clinical isolate of as antigen were used to measure serum IgG and sputum IgA anti- antibodies. The ELISA with core LPS distinguished nine CF patients colonised by from nine age- and sex-matched non-colonised CF patients. The rate of increase of anti- IgG antibodies after bacteriologically proven colonisation varied in individual patients: In some patients the first isolation of was preceded or accompanied by a two-to-four-fold rise in anti- LPS IgG titres. Absorption studies and immunoblot analysis of serum from patients colonised with demonstrated that a significant component of the anti- core LPS antibodies was specific for and did not react with the core LPS of . Immunoblotting also illustrated that there may be a degree of core heterogeneity between different isolates of . Detection of LPS specific antibodies in serum (IgG) and sputum (IgA) from CF patients is recommended to assist the identification of colonisation in CF patients.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-39-1-39
1993-07-01
2022-10-07
Loading full text...

Full text loading...

/deliver/fulltext/jmm/39/1/medmicro-39-1-39.html?itemId=/content/journal/jmm/10.1099/00222615-39-1-39&mimeType=html&fmt=ahah

References

  1. Gilligan PH. Microbiology of airways disease in patients with cystic fibrosis. Clin Microbiol Rev 1991; 4:35–51
    [Google Scholar]
  2. Isles A, Maclusky I, Corey M et al. Pseudomonas cepacia in cystic fibrosis: an emerging problem. J Pediatr 1984; 104:206–210
    [Google Scholar]
  3. Simmonds EJ, Conway SP, Ghoneim ATM, Ross H, Littlewood JM. Pseudomonas cepacia : a new pathogen in patients with cystic fibrosis referred to a large centre in the United Kingdom. Arch Dis Child 1990; 65:874–877
    [Google Scholar]
  4. Govan JRW, Nelson JW. Microbiology of lung infection in cystic fibrosis. Br Med Bull 1992; 48:912–930
    [Google Scholar]
  5. Govan JRW, Nelson JW, Brown PH. Pseudomonas cepacia: an appraisal for CF. CF News 1991 Oct./Nov. 12–14
    [Google Scholar]
  6. Nelson JW, Doherty CJ, Brown PH, Greening AP, Kaufmann ME, Govan JRW. Pseudomonas cepacia in inpatients with cystic fibrosis. Lancet 1991; 338:1525
    [Google Scholar]
  7. Henderson DK, Baptiste R, Parrillo J, Gill VJ. Indolent epidemic Pseudomonas cepacia bacteremia and pseudobacteremia in an intensive care unit traced to a contaminated blood gas analyzer. Am J Med 1988; 84:75–81
    [Google Scholar]
  8. Holmes B. The identification of Pseudomonas cepacia and its occurrence in clinical material. J Appl Bacteriol 1986; 61:299–314
    [Google Scholar]
  9. Goldman DA, Klinger JD. Pseudomonas cepacia: biology, mechanisms of virulence, epidemiology. J Pediatr 1986; 108:806–812
    [Google Scholar]
  10. Parr TR, Moore RA, Moore LV, Hancock REW. Role of porins in intrinsic antibiotic resistance of Pseudomonas cepacia. Antimicrob Agents Chemother 1987; 31:121–123
    [Google Scholar]
  11. Thomassen MJ, Demko CA, Klinger JD, Stern RC. Pseudomonas cepacia colonization among patients with cystic fibrosis: a new opportunist. Am Rev Respir Dis 1985; 131:791–796
    [Google Scholar]
  12. Pedersen SS, Hoiby N, Shand GH, Pressler T. Antibody response to Pseudomonas aeruginosa antigens in cystic fibrosis. In: Hoiby N, Pedersen SS, Shand GH, Doring G, Holder IA. (eds) Pseudomonas aeruginosa infection. Antibiot Chemother 1989; 42:130–153
    [Google Scholar]
  13. Aronoff SC, Quinn FJ, Stern RC. Longitudinal serum IgG response to Pseudomonas cepacia surface antigens in cystic fibrosis. Pediatr Pulmonol 1991; 11:289–293
    [Google Scholar]
  14. Aronoff SC, Stern RC. Serum IgG antibody to outer membrane antigens of Pseudomonas cepacia and Pseudomonas aeruginosa in cystic fibrosis. J Infect Dis 1988; 157:934–940
    [Google Scholar]
  15. Hedit A, Monteil H, Richard C. O and H serotyping of Pseudomonas cepacia. J Clin Microbiol 1983; 18:738–740
    [Google Scholar]
  16. Stull TL, LiPuma JJ, Edlind TD. A broad spectrum probe for molecular epidemiology of bacteria: ribosomal RNA. J Infect Dis 1988; 157:280–286
    [Google Scholar]
  17. Galanos C, Luderitz O, Westphal O. A new method for the extraction of R-lipopolysaccharides. Eur J Biochem 1969; 9:245–249
    [Google Scholar]
  18. Qureshi N, Takayama K, Ribi E. Purification and structural determination of non-toxic lipid A obtained from the lipopolysaccharide of Salmonella typhimurium. J BiolChem 1982; 257:11808–11815
    [Google Scholar]
  19. Hancock IC, Poxton IR. Separation and purification of surface components. In: Bacterial cell surface techniques Chichester: John Wiley and Sons; 198891
    [Google Scholar]
  20. Hitchcock PJ, Brown TM. Morphological heterogeneity among salmonella lipopolysaccharide chemotypes in silver stained polyacrylamide gels. J Bacteriol 1983; 154:269–277
    [Google Scholar]
  21. Laemli UK. Cleavage of structural proteins during the assembly of the head protein of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  22. Tsai C-M, Frasch CE. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 1982; 119:115–119
    [Google Scholar]
  23. Towbin H, Staehlin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 1979; 76:4350–4354
    [Google Scholar]
  24. Scott BB, Barclay GR. Endotoxin-polymyxin complexes in an improved enzyme-immunosorbent assay for IgG antibodies in blood donor sera to gram-negative endotoxin core glycolipids. Vox Sang 1987; 52:272–280
    [Google Scholar]
  25. Wilkinson SG. Composition and structure of lipopoly saccharide from Pseudomonas aeruginosa. Rev Infect Dis 1983; 5:Suppl 5S941–S949
    [Google Scholar]
  26. McKevitt AI, Woods DE. Characterization of Pseudomonas cepacia isolates from patients with cystic fibrosis. J Clin Microbiol 1984; 19:291–293
    [Google Scholar]
  27. Nelson JW, Barclay GR, Govan JRW. Diagnosis of chronic Pseudomonas aeruginosa infection in cystic fibrosis by ELISA for anti-Pseudomonas LPS IgG antibodies. Serodiagn Immunother Infect Dis 1990; 4:9–16
    [Google Scholar]
  28. Editorial Pseudomonas cepacia—more than a harmless com mensal?. Lancet 1992:3391385–1386
    [Google Scholar]
  29. Palleroni NJ, Genus I. Pseudomonas. In: Kreig NR, Holt JC. (eds) Bergey’s Manual of systemic bacteriology, vol 1 Baltimore: The Williams and Wilkins Co.; 1984141
    [Google Scholar]
  30. Nelson JW, Barclay GR, Micklem LR, Poxton IR, Govan JRW. Production and characterisation of mouse monoclonal antibodies reactive with the lipopolysaccharide core of Pseudomonas aeruginosa. J Med Microbiol 1992; 36:358–365
    [Google Scholar]
  31. Neal DJ, Wilkinson SG. Lipopolysaccharides from Pseudo monas maltophilia: structural studies of the side-chain, core and lipid-A regions of the lipopolysaccharide from strain NCTC 10257. Eur J Biochem 1982; 128:143–149
    [Google Scholar]
  32. Fick RB, Naegel GP, Squier SU, Wood RE, Gee JBL, Reynolds HY. Proteins of the cystic fibrosis respiratory tract: fragmented immunoglobulin G opsonic antibody causing defective opsonophagocytosis. J Clin Invest 1984; 74:236–248
    [Google Scholar]
  33. Heck LW, Alarcon PG, Kulhauy RM, Morihara K, Russell MW, Mestecky JF. Degradation of IgA proteins by Pseudomonas aeruginosa elastase. J Immunol 1990; 144:2253–2257
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-39-1-39
Loading
/content/journal/jmm/10.1099/00222615-39-1-39
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error