1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-39-1-3
1993-07-01
2022-01-26
Loading full text...

Full text loading...

/deliver/fulltext/jmm/39/1/medmicro-39-1-3.html?itemId=/content/journal/jmm/10.1099/00222615-39-1-3&mimeType=html&fmt=ahah

References

  1. Cuevas LE, Hart CA. Acute bacterial meningitis in Malawi. Malawi Med J 1991; 7:2–6
    [Google Scholar]
  2. Haberberger RL, Fox E, Asselin P, Said-Salah Y, Martinez S, Abbatte EA. Is Djibouti too hot and too humid for meningococci?. Trans R Soc Trop MedHyg 1990; 84:588
    [Google Scholar]
  3. Thomson APJ, Hart CA, Sills JA. Meningococcal disease in Liverpool children 1977-1987: mode of presentation. Ped Rev Commun 1990; 5:109–116
    [Google Scholar]
  4. Hitchcock PJ. Unified nomenclature for pathogenic Neisseria species. Clin Microbiol Rev 1989; 2:Suppl:S64–S65
    [Google Scholar]
  5. Virji M, Alexandrescu C, Ferguson DJP, Saunders JR, Moxon ER. Variations in the expression of pili, the effect on adherence of Neisseria meningitidis in human epithelial and endothelial cells. Mol Microbiol 1992; 6:1271–1279
    [Google Scholar]
  6. Perry ACF, Hart CA, Nicolson IJ, Heckels JE, Saunders JA. Inter strain homology of pilin gene sequences in Neisseria meningitidis isolates that express markedly different antigenic pilus types. J Gen Microbiol 1987; 133:1409–1418
    [Google Scholar]
  7. Fox AJ, Jones DM, Gray JJ, Caugant DA, Saunders NA. An epidemiologically valuable typing method for Neisseria meningitidis by analysis of restriction fragment length polymorphisms. J Med Microbiol 1991; 34:265–270
    [Google Scholar]
  8. Caugant DA, Froholm LO, Bovre K et al. Intercontinental spread of a genetically distinctive complex of clones of Neisseria meningitidis causing epidemic disease. Proc Natl Acad Sci USA 1986; 83:4927–4931
    [Google Scholar]
  9. Moore PS. Meningococcal meningitis in sub-Saharan Africa: a model for the epidemic process. Clin Infect Dis 1992; 14:515–525
    [Google Scholar]
  10. Jones DM, Kaczmarski EB. Meningococcal infection in Eng land and Wales: 1991. CDR Rev 1992; 2:R61–R63
    [Google Scholar]
  11. Olyhoek T, Crowe BA, Achtman M. Clonal population structure of Neisseria meningitidis serogroup A isolated from epidemics and pandemics between 1915 and 1983. Rev Infect Dis 1987; 9:665–692
    [Google Scholar]
  12. Moore PS, Reeves MW, Schwarz B, Gellin BG, Broome CV. Intercontinental spread of an epidemic group A Neisseria meningitidis strain. Lancet 1989; 2:260–263
    [Google Scholar]
  13. Li X, Hu X, Gao L, Xi W, Ji Y, Hu Z. The clonal population structure and serosubtypes of Neisseria meningitidis serogroup A isolated in China. In: Achtman M, Kohl P, Marchal C, Morelli G, Seiler A, Thiesen B. (eds) Neisseriae—1990 Berlin: Walter de Gruyter and Co.; 1991159
    [Google Scholar]
  14. Wedege E, Caugant DA, Froholm LO, Zollinger WD. Characterization of serogroup A and B strains of Neisseria meningitidis with serotype 4 and 21 monoclonal antibodies and by multilocus enzyme electrophoresis. J Clin Microbiol 1991; 29:1486–1492
    [Google Scholar]
  15. Wang J-F, Caugant DA, Li X et al. Clonal and antigenic analysis of serogroup A Neisseria meningitidis with particular reference to epidemiological features of epidemic meningitis in China. Infect Immun 1992; 60:5267–5282
    [Google Scholar]
  16. Morelli G, Lammel CJ, Pohler J et al. Immunogenicity and variability of epitopes within the IgAl pro tease from serogroup A Neisseria meningitidis. Mol Microbiol 1993 (in preparation)
    [Google Scholar]
  17. Suker J, Achtman M, Wang J-F, Feavers IM, Maiden MCJ. The class 1 outer membrane protein (OMP) of serogroup A meningococci: Epidemiological inferences from nucleotide sequence data. In: Proceedings of the Eighth International Pathogenic Neisseria Conference 1993 in press
    [Google Scholar]
  18. Crowe BA, Wall RA, Kusecek B et al. Clonal and variable properties of Neisseria meningitidis isolated from cases and carriers during and after an epidemic in the Gambia, West Africa. J Infect Dis 1989; 159:686–700
    [Google Scholar]
  19. Salih MAM, Danielsson D, Backman A, Caugant DA, Achtman M, Olcen P. Characterization of epidemic and nonepidemic Neisseria meningitidis serogroup A strains from Sudan and Sweden. J Clin Microbiol 1990; 28:1711–1719
    [Google Scholar]
  20. Bjorvatn B, Hassan-King M, Greenwood B, Haimanot RT, Fekade D, Sperber G. DNA fingerprinting in the epidemiology of African serogroup A Neisseria meningitidis. Scand J Infect Dis 1992; 24:323–332
    [Google Scholar]
  21. Achtman M, Neibert M, Crowe BA et al. Purification and characterization of eight class 5 outer membrane protein variants from a clone of Neisseria meningitidis serogroup A. J Exp Med 1988; 168:507–525
    [Google Scholar]
  22. Achtman M, Kusecek B, Morelli G et al. A comparison of the variable antigens expressed by clone IV-1 and subgroup III of Neisseria meningitidis serogroup A. J Infect Dis 1992; 65:53–68
    [Google Scholar]
  23. Meyer TF, van Putten JPM. Genetic mechanisms and biological implications of phase variation in pathogenic Neisseriae. Clin Microbiol Rev 1989; 2:Suppl:S139–S145
    [Google Scholar]
  24. Olyhoek AJM, Sarkari J, Bopp M, Morelli G, Achtman M. Cloning and expression in Escherichia coli of opc, the gene for an unusual class 5 outer membrane protein from Neisseria meningitidis. Microb Pat hog 1991; 11:249–257
    [Google Scholar]
  25. Achtman M, Wall RA, Bopp M et al. Variation in class 5 protein expression by serogroup A meningococci during a meningitis epidemic. J Infect Dis 1991; 164:375–382
    [Google Scholar]
  26. Aho EL, Dempsey JA, Hobbs MM, Klapper DG, Cannon JG. Characterization of the opa (class 5) gene family of Neisseria meningitidis. Mol Microbiol 1991; 5:14291437
    [Google Scholar]
  27. Sarkari JF, Olyhoek T, Bopp M et al. Class 5 proteins and opa genes in clones IV-1 and III-l of Neisseria meningitidis serogroup A. In: Achtman M, Kohl P, Marchal C, Morelli G, Seiler A, Theisen B. (eds) Neisseriae-1990 Berlin: Walter de Gruyter and Co.; 1991539
    [Google Scholar]
  28. Virji M, Makepeace K, Ferguson DJP, Achtman M, Sarkari J, Moxon ER. Expression of the Opc protein correlates with invasion of epithelial and endothelial cells by Neisseria meningitidis. Mol Microbiol 1992; 6:2785–2795
    [Google Scholar]
  29. Rosenqvist E, Hoiby EA, Wedege E, Kusecek B, Achtman M. The 5c protein of Neisseria meningitidis is highly immunogenic in humans and stimulates bactericidal antibodies. J Infect Dis 1993: in press
    [Google Scholar]
  30. de Cossio MEF, Ohlin M, Llano M et al. Human monoclonal antibodies against an epitope on the class 5c outer membrane protein common to many pathogenic strains of Neisseria meningitidis. J Infect Dis 1992; 166:1322–1328
    [Google Scholar]
  31. Wang J-F, Morelli G, Bopp M et al. Clonal and antigenic analyses of Neisseria meningitidis bacteria belonging to the ET37 complex isolated from Mali and elsewhere. In: Achtman M, Kohl P, Marchal C, Morelli G, Seiler A, Thiesen B. (eds) Neisseriae—1990 Berlin: Walter de Gruyter and Co.; 1991141
    [Google Scholar]
  32. Wang J-F, Caugant DA, Morelli G, Koumare B, Achtman M. Antigenic and epidemiological properties of the ET37 complex of Neisseria meningitidis. J Infect Dis 1993 (in press)
    [Google Scholar]
  33. Gotschlich EC, Liu T-Y, Artenstein MS. Human immunity to the meningococcus III. Preparation and immunochemical properties of the group A, group B, and group C meningococcal polysaccharides. J Exp Med 1969; 129:1349–1365
    [Google Scholar]
  34. Sparling PF, Cannon JG, So M. Phase and antigenic variation of pili and outer-membrane protein-II of Neisseria gonorrhoeae. J Infect Dis 1986; 153:196–201
    [Google Scholar]
  35. Connell TD, Shaffer D, Cannon JG. Characterization of the repertoire of hypervariable regions in the protein-II (opa) gene family of Neisseria gonorrhoeae. Mol Microbiol 1990; 4:439–449
    [Google Scholar]
  36. Connell TD, Black WJ, Kawula TH et al. Recombination among protein-II genes of Neisseria gonorrhoeae generates new coding sequences and increases structural variability in the protein-II family. Mol Microbiol 1988; 2:227–236
    [Google Scholar]
  37. Stephens DS, Whitney AM, Rothbard J, Schoolnik GK. Pili of Neisseria meningitidis—analysis of structure and investigation of structural and antigenic relationships to gonococcal pili. J Exp Med 1985; 161:1539–1553
    [Google Scholar]
  38. Tinsley CR, Heckels JE. Variation in the expression of pili and outer-membrane protein by Neisseria meningitidis during the course of meningococcal infection. J Gen Microbiol 1986; 132:2483–2490
    [Google Scholar]
  39. Pinner RW, Spellman PA, Stephens DS. Evidence for functionally distinct pili expressed by Neisseria meningitidis. Infect Immun 1991; 59:3169–3175
    [Google Scholar]
  40. Stephens DS, Krebs JW, McGee ZA. Loss of pili and decreased attachment to human-cells by Neisseria meningitidis and Neisseria gonorrhoeae exposed to subinhibitory concentrations of antibiotics. Infect Immun 1984; 46:507–513
    [Google Scholar]
  41. Stephens S, Zollinger WD, Schoolnik GK. Pathogenesis of Neisseria meningitidis—effect of pili and pilin sub-unit antibodies on adherence of meningococci to human-cells. Clin Res 1983; 31:22–23
    [Google Scholar]
  42. Stephens DS, Hoffman LH, McGee ZA. Interaction of Neisseria meningitidis with human nasopharyngeal mucosa—attachment and entry into columnar epithelial-cells. J Infect Dis 1983; 148:369–376
    [Google Scholar]
  43. Stephens DS, McGee ZA. Attachment of Neisseria meningitidis to human mucosal surfaces—influence of pili and type of receptor cell. J Infect Dis 1981; 143:525–532
    [Google Scholar]
  44. Virji M, Kayhty H, Ferguson DJP, Alexandrescu C, Heckels JE, Moxon ER. The role of pili in the interactions of pathogenic neisseria with cultured human endothelial-cells. Mol Microbiol 1991; 5:1831–1841
    [Google Scholar]
  45. Meyer TF. Pathogenic neisseriae—a model of bacterial virulence and genetic flexibility. IntJ Med Microbiol 1990; 274:135–154
    [Google Scholar]
  46. Perry ACF, Nicolson IJ, Saunders JR. Neisseria meningitidis Cl 14 contains silent, truncated pilin genes that are homologous to Neisseria gonorrhoeae pil sequences. J Bacteriol 1988; 170:1691–1697
    [Google Scholar]
  47. Virji M, Heckels JE, Potts WJ, Hart CA, Saunders JR. Identification of epitopes recognized by monoclonal-anti- bodies SMI and SM2 which react with all pili of Neisseria gonorrhoeae but which differentiate between 2 structural classes of pili expressed by Neisseria meningitidis and the distribution of their encoding sequences in the genomes of Neisseria spp. J Gen Microbiol 1989; 135:3239–3251
    [Google Scholar]
  48. Potts WJ, Saunders JR. Nucleotide-sequence of the structural gene for class-I pilin from Neisseria meningitidis—homologies with the pilE locus of Neisseria gonorrhoeae. Mol Microbiol 1988; 2:647–653
    [Google Scholar]
  49. Virji M, Heckels JE. Role of anti-pilus antibodies in host defense against gonococcal-infection studied with monoclonal anti-pilus antibodies. Infect Immun 1985; 49:621628
    [Google Scholar]
  50. Virji M, Heckels JE. The role of common and type-specific pilus antigenic domains in adhesion and virulence of gonococci for human epithelial cells. J Gen Microbiol 1984; 130:1089–1095
    [Google Scholar]
  51. Diaz JL, Virji M, Heckels JE. Structural and antigenic differences between 2 types of meningococcal pili. FEMS Microbiol Lett 1984; 21:181–184
    [Google Scholar]
  52. Virji M, Heckels JE. Antigenic cross-reactivity of neisseriapili—investigations with type-specific and species-specific monoclonal antibodies. J Gen Microbiol 1983; 129:2761–2768
    [Google Scholar]
  53. Stephens DS, Whitney AM, Schoolnik GK, Zollinger WD. Common epitopes of pilin of Neisseria meningitidis. J Infect Dis 1988; 158:332–342
    [Google Scholar]
  54. Hagblom P, Segal E, Billyard E, So M. Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae. Nature 1985; 315:156–158
    [Google Scholar]
  55. So M, Billyard E, Deal C et al. Gonococcal pilus—genetics and structure. Curr Top Microbiol Immunol 1985; 118:13–28
    [Google Scholar]
  56. Perry ACF, Nicolson IJ, Saunders JR. Structural-analysis of the pilE region of Neisseria gonorrhoeae P9. Gene 1987; 60:85–92
    [Google Scholar]
  57. Rothbard JB, Schoolnik GK. The primary sequence and antigenic structure of gonococcal pilin—approaches towards a gonococcal vaccine. Adv Exp Med Biol 1985; 185:247–273
    [Google Scholar]
  58. Rothbard JB, Fernandez R, Schoolnik GK. Strain-specific and common epitopes of gonococcal pili. J Exp Med 1984; 160:208–221
    [Google Scholar]
  59. Schoolnik GK, Fernandez R, Tai JY, Rothbard J, Gotschlich EC. Gonococcal pili—primary structure and receptor-binding domain. J Exp Med 1984; 159:1351–1370
    [Google Scholar]
  60. Zak K, Diaz JL, Jackson D, Heckels JE. Antigenic variation during infection with Neisseria gonorrhoeae—detection of antibodies to surface-proteins in sera of patients with gonorrhea. J Infect Dis 1984; 149:166–174
    [Google Scholar]
  61. Virji M, Heckels JE. Location of a blocking epitope on outer-membrane protein-III of Neisseria gonorrhoeae by synthetic peptide analysis. J Gen Microbiol 1989; 135:1895–1899
    [Google Scholar]
  62. Meyer TF, Billyard E, Haas R, Storzbach S, So M. Pilus genes of Neisseria gonorrhoeae—chromosomal organisation and DNA-sequence. Proc Natl Acad Sci USA 1984; 81:6110–6114
    [Google Scholar]
  63. Meyer TF, Mlawer N, So M. Pilus expression in Neisseria gonorrhoeae involves chromosomal rearrangement. Cell 1982; 30:45–52
    [Google Scholar]
  64. Haas R, Veit S, Meyer TF. Silent pilin genes of Neisseria gonorrhoeae MS11 and the occurrence of related hypervariant sequences among other gonococcal isolates. Mol Microbiol 1992; 6:197–208
    [Google Scholar]
  65. Haas R, Meyer TF. The repertoire of silent pilus genes in Neisseria gonorrhoeae—evidence for gene conversion. Cell 1986; 44:107–115
    [Google Scholar]
  66. Taha MK, So M, Seifert HS, Billyard E, Marchal C. Pilin expression in Neisseria gonorrhoeae is under both positive and negative transcriptional control. EM BO J 1988; 7:4367–4378
    [Google Scholar]
  67. Taha MK, Dupuy B, Saurin W, So M, Marchal C. Control of pilus expression in Neisseria gonorrhoeae as an original system in the family of 2-component regulators. Mol Microbiol 1991; 5:137–148
    [Google Scholar]
  68. Swanson J, Barrera O, Sola J, Boslego J. Expression of outer-membrane protein-II by gonococci in experimental gonorrhea. J Exp Med 1988; 168:2121–2129
    [Google Scholar]
  69. Swanson J, Bergstrom S, Robbins K, Barrera O, Corwin D, Koomey JM. Gene conversion involving the pilin structural gene correlates with pilus and reversible pilin. Cell 1986; 47:267–276
    [Google Scholar]
  70. Swanson J, Bergstrom S, Barrera O, Robbins K, Corwin D. Pilus gonococcal variants—evidence for multiple forms of piliation control. J Exp Med 1985; 162:729–744
    [Google Scholar]
  71. Bergstrom S, Robbins K, Koomey JM, Swanson J. Piliation control mechanisms in Neisseria gonorrhoeae. Proc Natl Acad Sci USA 1986; 83:3890–3894
    [Google Scholar]
  72. Manning PA, Kaufmann A, Roll U, Pohlner J, Meyer TF, Haas R. L-pilin variants of Neisseria gonorrhoeae MS11. Mol Microbiol 1991; 5:917–926
    [Google Scholar]
  73. Haas R, Schwarz H, Meyer TF. Release of soluble pilin antigen coupled with gene conversion in Neisseria gonorrhoeae. Proc Natl Acad Sci USA 1987; 84:9079–9083
    [Google Scholar]
  74. Gibbs CP, Reimann BY, Schultz E, Kaufmann A, Haas R, Meyer TF. Reassortment of pilin genes in Neisseria gonorrhoeae occurs by 2 distinct mechanisms. Nature 1989; 338:651–652
    [Google Scholar]
  75. Hill SA, Morrison SG, Swanson J. The role of direct oligo nucleotide repeats in gonococcal pilin gene variation. Mol Microbiol 1990; 4:1341–1352
    [Google Scholar]
  76. Seifert HS, Ajioka RS, Marchal C, Sparling PF, So M. DNA transformation leads to pilin antigenic variation in Neisseria gonorrhoeae. Nature 1988; 336:392–395
    [Google Scholar]
  77. Swanson J, Morrison S, Barrera O, Hill S. Piliation changes in transformation-defective gonococci. J Exp Med 1990; 171:2131–2139
    [Google Scholar]
  78. Scocca JJ. The role of transformation in the variability of the Neisseria gonorrhoeae cell-surface. Mol Microbiol 1990; 4:321–327
    [Google Scholar]
  79. Taubkin SP. Neisseria meningitidis bacteraemia. Pediatr Infect Dis 1982; 1:374
    [Google Scholar]
  80. Olcen P, Eeg-Olofsson O, Fryden A et al. Benign meningo coccaemia in childhood. Scand J Infect Dis 1978; 10:107–111
    [Google Scholar]
  81. Greenwood BM, Whittle HC, Bryceson ADM. Allergic complications of meningococcal disease II. Immunological investigations. BMJ 1973; 2:737–740
    [Google Scholar]
  82. Greenwood BM, Bradley AK, Wall RA. Meningococcal disease and season in sub-Saharan Africa. Lancet 1985; 2:829–830
    [Google Scholar]
  83. Cartwright KAV, Jones DM, Smith AJ et al. Influenza A and meningococcal disease. Lancet 1991; 338:554–557
    [Google Scholar]
  84. Francke EL, Neu HC. Post splenectomy infection. Surg Clin North Am 1981; 61:135–155
    [Google Scholar]
  85. Densen P, Weiler JM, Griffiss JM, Hoffman LG. Familial properdin deficiency and fatal meningococcaemia. N Engl J Med 1987; 316:922–926
    [Google Scholar]
  86. Ross SC, Densen P. Complement deficiency states and infection. Epidemiology, pathogenesis and consequences of neisserial and other infections in an immune deficiency. Medicine 1984; 63:243–273
    [Google Scholar]
  87. Brandtzaeg P, Mollnes TE, Kierulf P. Complement activation and endotoxin levels in systemic meningococcal disease. J Infect Dis 1989; 160:58–65
    [Google Scholar]
  88. Brandtzaeg P, Kierulf P, Gaustad P et al. Plasma endotoxin as predictor of multiple organ failure and death in systemic meningococcal disease. J Infect Dis 1989; 159:195–204
    [Google Scholar]
  89. Emancipator K, Csako G, Elin RJ. In vitro inactivation of bacterial endotoxin by human lipoproteins and apolipo-proteins. Infect Immun 1992; 60:596–601
    [Google Scholar]
  90. Schumann RR, Leong SR, Flaggs GW et al. Structure and function of lipooligosaccharide binding protein. Science 1990; 249:1429–1431
    [Google Scholar]
  91. Mathison JC, Tobias PS, Wolfson E, Ulevitch RJ. Plasma lipopolysaccharide (LPS)-binding protein. J Immunol 1992; 149:200–206
    [Google Scholar]
  92. Michie HR, Manogue KR, Spriggs DR. Detection of circulating tumour necrosis factor after endotoxin administration. N Engl J Med 1988; 318:1481–1486
    [Google Scholar]
  93. Waage A, Brandtzaeg P, Halstensen A et al. The complex pattern of cytokines in serum from patients with meningococcal septic shock. J Exp Med 1989; 169:333–338
    [Google Scholar]
  94. Molvig J, Baek L, Christensen P et al. Endotoxin-stimulated human monocyte secretion of interleukin 1, tumour necrosis factor alpha, and prostaglandin E2 shows stable interindividual differences. Scand J Immunol 1988; 27:705–716
    [Google Scholar]
  95. Jacob CJ, Fronek Z, Lewis GD et al. Heritable major histocompatibility complex class II associated differences in production of tumour necrosis factor X: Relevance to genetic predisposition to systemic lupus erythematosus. Proc Natl Acad Sci USA 1990; 87:1233–1237
    [Google Scholar]
  96. Goldschneider I, Gotschlich EC, Artenstein MS. Human immunity to the meningococcus I. The role of humoral antibodies. J Exp Med 1969; 129:1307–1326
    [Google Scholar]
  97. Goldschneider I, Gotschlich EC, Artenstein MS. Human immunity to the meningococcus II. Development of natural immunity. JExp Med 1969; 129:1327–1348
    [Google Scholar]
  98. Gold R, Lepow M. Present status of polysaccharide vaccines in the prevention of meningococcal disease. Adv Paediatr 1976; 23:71–93
    [Google Scholar]
  99. Kayhty H, Jousimies-Somer H, Pettola H, Makela PH. Anti body response to capsular polysaccharides of Group A and C Neisseria meningitidis and Haemophilus influenzae type b during bacteraemic disease. J Infect Dis 1981; 143:32–41
    [Google Scholar]
  100. Ambrosino DM, Siber GR, Chilmonczyk BA et al. An immunodeficiency characterised by impaired antibody responses to polysaccharides. N Engl J Med 1987; 316:790–793
    [Google Scholar]
  101. Griffiss JM, Brandt BI, Broud DD et al. Immune response in infants and children to disseminated infections with Neisseria meningitidis. J Infect Dis 1984; 150:71–79
    [Google Scholar]
  102. Hoffman TA, Edwards EA. Group-specific polysaccharide antigen and humoral antibody response in disease due to Neisseria meningitidis. J Infect Dis 1972; 126:636–644
    [Google Scholar]
  103. Artenstein MS, Brandtt BL, Tramont EC et al. Serological studies of meningococcal infection and polysaccharide vaccination. J Infect Dis 1971; 124:277–288
    [Google Scholar]
  104. Siber GR, Schur PH, Aisenberg AC et al. Correlation between serum IgG2 concentrations and the antibody response to bacterial polysaccharide antigens. N Engl J Med 1980; 267:302–303
    [Google Scholar]
  105. Schlesinger Y, Granoff DM. Avidity and bactericidal activity of antibody elicited by different Haemophilus influenzae Type b conjugate vaccines. J Am Med Assoc 1992; 267:1489–1494
    [Google Scholar]
  106. Harthug S, Rosenqvist E, Hoiby EA et al. Antibody response in Group B meningococcal disease determined by enzyme- linked immunosorbent assay with serotype 15 outer membrane antigen. J Clin Microbiol 1986; 24:947–953
    [Google Scholar]
  107. Rosenqvist E, Harthug S, Froholm LO et al. Antibody responses to serogroup B meningococcal outer membrane antigens after vaccination and infection. J Clin Microbiol 1988; 26:1543–1548
    [Google Scholar]
  108. Maeland JA, Wedege E. Serum antibodies to cross-reactive Neisseria outer membrane antigens in healthy persons and patients with meningococcal disease. APMIS 1989; 97:774–780
    [Google Scholar]
  109. Sugasamara RJ. Recognition of serogroup A Neisseria menin gitidis serotype antigens by human antisera. Infect Immun 1985; 48:23–28
    [Google Scholar]
  110. Bundell KR, Fox AJ, Guiver M et al. The development of an inhibition enzyme-linked immunosorbent assay to detect total antibody to the PI. 16 subtype antigen of Neisseria meningitidis in human sera. Serodiagn Immunother 1987; 1:353–361
    [Google Scholar]
  111. Estabrook MM, Mandrell RE, Apicella MA, Griffiss JM. Measurement of the human immune response to meningococcal lipooligosaccharide antigens by using serum to inhibit monoclonal antibody binding to purified lipooligosaccharide. Infect Immun 1990; 58:2204–2213
    [Google Scholar]
  112. Zollinger WD, Mandrell RE. Studies of the human antibody response to specific meningococcal outer membrane proteins of serotype 2 and 15. Med Trop 1983; 43:143–147
    [Google Scholar]
  113. Poolman JT, Hopman CTP, Zanen HC. Immunogenicity of ngococcal antigens as detected in patient sera. Infect Immun 1983; 40:398–406
    [Google Scholar]
  114. Black JR, Black WJ, Cannon JG. Neisserial antigen H.8 is immunogenic in patients with disseminated gonococcal and meningococcal infections. J Infect Dis 1985; 151:650–657
    [Google Scholar]
  115. Black JR, Dyer DW, Thompson MK, Sparling PF. Human immune response to iron repressible outer membrane proteins of Neisseria meningitidis. Infect Immun 1986; 54:710–713
    [Google Scholar]
  116. Ala’Aldeen DA, Wall RA, Borriello SP. Immunogenicity and cross reactivity of the 70-Kda iron regulated protein of Neisseria meningitidis in man and animals. J Med Microbiol 1990; 32:275–281
    [Google Scholar]
  117. Ross SC, Rosenthal PJ, Berberich HM, Densen P. Killing of Neisseria meningitidis by human neutrophils: Implications for normal and complement-deficient individuals. J Infect Dis 1987; 155:1266–1275
    [Google Scholar]
  118. Lowell GH, Smith LF, Artenstein MS et al. Antibody dependent cell mediated antibacterial activity of human mononuclear cells. 1. K-Lymphocytes and monocytes are effective against meningococci in co-operation with human immune sera. J Exp Med 1979; 150:127–137
    [Google Scholar]
  119. Griffiss JM. Epidemic meningococcal disease: Synthesis of a hypothetical immunoepidemiologic model. Rev Infect Dis 1982; 4:159–172
    [Google Scholar]
  120. Orren A, Warren RE, Potter PC et al. Antibodies to Meningococcal class 1 outer membrane proteins in South African complement-deficient and complement-sufficient subjects. Infect Immun 1992; 60:4510–4516
    [Google Scholar]
  121. Poolman JT, Hopman CTP, Zanen HC. Colony variants of Neisseria meningitidis strains 2996 (B: 2b: Pl-2): influence of class 5 outer membrane proteins and lipopoly- saccharides. J Med Microbiol 1985; 19:203–210
    [Google Scholar]
  122. Karrula TH, Aho EL, Barritt DS et al. Reversible phase variation of expression of Neisseria meningitidis class 5 outer membrane proteins and their relationship to gonococcal proteins II. Infect Immun 1988; 56:380–386
    [Google Scholar]
  123. Poolman JT, de Marie S, Zanen HC. Variability of low molecular-weight heat modifiable outer membrane proteins of Neisseria meningitidis. Infect Immun 1980; 30:642–648
    [Google Scholar]
  124. Poolman JT, Timmermans HAM, Hopman CTP et al. Comparison of meningococcal outer membrane protein vaccines solubilised with detergent or C polysaccharide. In: Gonococci and meningococciProceedings of 5th International Pathogenic Neisseriae Conference Dordrecht: Kluver Academic Publishers; 1988159–165
    [Google Scholar]
  125. van Putten JPM, Linders MTJ, Weel JFL, Poolman JT. Differential expression of Fe-repressible and growth rate sensitive proteins in Neisseria meningitidis and Neisseria gonorrhoeae. In: Gonococci and meningococciProceedings of 5th International Pathogenic Neisseriae Conference Dordrecht: Kluver Academic Publishers; 1988781–788
    [Google Scholar]
  126. Keevil CW, Major NC, Davies DB, Robinson A. Physiology and virulence determinants of Neisseria gonorrhoeae grown in glucose, oxygen or cystine-limited continuous culture. J Gen Microbiol 1986; 132:3289–3302
    [Google Scholar]
  127. Wall RA, Davies HA, Borriello SP. Epitopes of serogroup B Neisseria meningitidis analysed in vitro and directly from cerebrospinal fluid. FEMS Microbiol Lett 1989; 65:129–136
    [Google Scholar]
  128. >Ala’Aldeen DA, Powell NBL, Wall RA, Borriello SP. Localisation of meningococcal receptors for human transferrin. Infect Immun 1993: in press
    [Google Scholar]
  129. Greenwood BM, Greenwood AM, Bradley AK et al. Factors influencing susceptibility to meningococcal disease during an epidemic in The Gambia, West Africa. J Infect 1987; 14:167–184
    [Google Scholar]
  130. Griffiss JM, Bertram MA. Immunoepidemiology of menin-gococcal disease in military recruits—II. Blocking of serum bactericidal activity by circulating IgA early in the course of invasive disease. J Infect Dis 1977; 136:733–739
    [Google Scholar]
  131. Munkley A, Tinsley CR, Virji M, Heckels JE. Blocking of bactericidal killing of Neisseria meningitidis by antibodies directed against class 4 outer membrane protein. Microb Pathog 1991; 11:447–452
    [Google Scholar]
  132. Roberts RB. The relationship between group A and group C meningococcal polysaccharides and serum opsonins in man. J Exp Med 1970; 131:499–513
    [Google Scholar]
  133. Halstensen A, Sjursen H, Vollset SE et al. Serum opsonins to serogroup B meningococci in meningococcal disease. Scand J Infect Dis 1989; 21:267–276
    [Google Scholar]
  134. Guttormsen HK, Bjerknes R, Naess A et al. Cross-reacting serum opsonins in patients with meningococcal disease. Infect Immun 1992; 60:2777–2783
    [Google Scholar]
  135. Marzouk O, Thomason APJ, Sill JA, Hart CA. Clinical features and management of meningococcal disease. Care Crit III 1991; 1:186–187
    [Google Scholar]
  136. Marzouk O, Thomson APJ, Sills JA, Hart CA. Features and outcome in meningococcal disease presenting with maculopapular rash. Arch Dis Child 1991; 66:485–487
    [Google Scholar]
  137. Thomson APJ, Hayhurst G. Septicaemia not meningitis: press publicity and meningococcal disease in South Cheshire. Paediatr Rev Commun 1992; 6:191
    [Google Scholar]
  138. Meningitis Fact Sheet The National Meningitis Trust. Fern House, Bath Road, Stroud, Gloucs. GL5 3TJ September 1990
    [Google Scholar]
  139. Leclerc F, Beuscart R, Guillois B et al. Prognostic factors of severe infectious purpura in children. Intensive Care Med 1985; 11:140–143
    [Google Scholar]
  140. Gedde-Dahl TW, Bjark P, Hoiby EA, Host JH, Bruun JN. Severity of meningococcal disease: assessment by factors and scores and implications for patient management. Rev Infect Dis 1990; 12:973–992
    [Google Scholar]
  141. Leclerc F, Chenand M, Delepoulle F, Diependaele JF, Martinot A, Hue V. Prognostic value of C-reactive protein level in severe infectious purpura: a comparison with eight other scores. Crit Care Med 1991; 19:430–432
    [Google Scholar]
  142. Stokland T, Flaegstad T, Gutteberg TJ. A clinical score for the prediction of outcome of patients with meningococcal infection. Acta Paediatr Scand 1985; 322:S12
    [Google Scholar]
  143. Sinclair JF, Skeoch CH, Hallworth D. Prognosis of meningo coccal septicaemia. Lancet 1987; 2:38
    [Google Scholar]
  144. Thomson APJ, Sills JA, Hart CA. Validation of the Glasgow Meningococcal Septicaemia Prognostic Score: a 10-year retrospective survey. Crit Care Med 1991; 19:26–30
    [Google Scholar]
  145. Reingold AC, Broome CV, Hightower AW et al. Age-specific differences in duration of clinical protection after vaccination with meningococcal polysaccharide A vaccine. Lancet 1985; 2:114–118
    [Google Scholar]
  146. Sierra GVG, Campa HC, Varacel NM et al. Vaccine against group B Neisseria meningitidis: protection trial and mass vaccination results in Cuba. NIPH Ann 1991; 14:195–210
    [Google Scholar]
  147. Bjune G, Hoiby EA, Gronnesby JK et al. Effect of outer membrane vesicle vaccine against group B meningococcal disease in Norway. Lancet 1991; 338:1093–1096
    [Google Scholar]
  148. de Moraes JC, Perkins BA, Camargo MCC et al. Protective efficacy of a serogroup B meningococcal vaccine in Sao Paulo, Brazil. Lancet 1992; 340:1074–1078
    [Google Scholar]
  149. Blakebrough IS, Greenwood BM, Whittle HC, Bradley AK, Gilles HM. Failure of meningococcal vaccination to stop transmission of meningococci in Nigerian schoolboys. Ann Trop Med Parasitol 1983; 77:175–178
    [Google Scholar]
  150. The Meningococcal Disease Surveillance Group Analysis of endemic meningococcal disease by serogroup and evaluation of chemoprophylaxis. J Infect Dis 1976; 134:201–204
    [Google Scholar]
  151. Munford RS, Tauney A, de E, Morais JS, Fraser DW, Feldman RA. Spread of meningococcal infection within households. Lancet 1974; 1:1275–1278
    [Google Scholar]
  152. De Wals P, Hertoghe L, Borlee-Grimee I et al. Meningococcal disease in Belgium, secondary attack rate among household, day-care nursery and pre-elementary school contacts. J Infect 1981; 3:Suppl 153–61
    [Google Scholar]
  153. Cooke RPD, Riordan T, Jones DM, Painter MJ. Secondary cases of meningococcal infection among close family and household contacts in England and Wales, 1984-7. BMJ 1989; 298:555–558
    [Google Scholar]
  154. Kuhns DW, Nelson CT, Feldman HA, Kuhns LR. The prophylactic value of sulfadiazine in the control of meningococcic meningitis. J Am Med Assoc 1943; 123:335–339
    [Google Scholar]
  155. Hoiby EA, Moe PJ, Lystad A, Froholm O, Borre K. Phenoxymethyl-penicillin treatment of household contacts of meningococcal disease patients. Antonie van Leeuwenhoek J Microbiol 1986; 52:255–257
    [Google Scholar]
  156. Artenstein MS, Lamson TH, Evans JR. Attempted prophy laxis against meningococcal infection using intramuscular penicillin. Milit Med 1967; 132:1009–1011
    [Google Scholar]
  157. Shapiro ED. Prophylaxis for bacterial meningitis. Med Clin North Am 1985; 69:269–280
    [Google Scholar]
  158. Wilson HD. Prophylaxis in bacterial meningitis. Arch Dis Child 1981; 56:817–819
    [Google Scholar]
  159. Sanders E, Deal WB. Prevention of meningococcal infections. J Infect Dis 1970; 121:449–451
    [Google Scholar]
  160. Khuri-Bules N. Meningococcal meningitis following rifampicin prophylaxis. Am J Dis Child 1973; 126:689–691
    [Google Scholar]
  161. Burian V, Fofona Y, Sow O. Etude des Neisseria meningitidis isolates en Republique du Mali en 1970. Bull World Health Organ 1974; 51:495–500
    [Google Scholar]
  162. Njoku-Obu AN, Agbo JAC. Meningococcal carrier rates in parts of Eastern Nigeria. Bull World Health Organ 1976; 54:271–273
    [Google Scholar]
  163. Guttler RB, Counts GW, Avent CK, Beaty HN. Effect on rifampicin and minocycline on meningococcal carrier rates. J Infect Dis 1971; 124:199–205
    [Google Scholar]
  164. Munford RS, Sussurama ZJ, Phillips CJ et al. Eradication of carriage of Neisseria meningitidis in families: a study from Brazil. J Infect Dis 1974; 129:644–649
    [Google Scholar]
  165. Drew TM, Altman R, Black K, Goldfield M. Minocycline for prophylaxis of infection with Neisseria meningitidis: high rate of side effects in recipients. J Infect Dis 1976; 133:194–198
    [Google Scholar]
  166. Kaiser AB, Hennekens CH, Saslow MS et al. Seroepidemiology and chemoprophylaxis of disease due to sulphona-mide-resistant Neisseria meningitidis in a civilian population. J Infect Dis 1974; 130:217–224
    [Google Scholar]
  167. Hart CA, Cuevas LE, Kazembe P, Mughogho GK, Tillotson GS. The use of ciprofloxacin to eradicate oropharyngeal carriage of Neisseria meningitidis '. A preliminary analysis. Adv Antimicrob Antineopl Chemother 1992; 11:167–171
    [Google Scholar]
  168. Schubiger G, Munzin J, Dudli C, Wipfli U. Meningokokken-epidemic in einer internatsschule Sekundererkrangkung mit Rifampicin-resistentem Erreger unter Chemopro- phylaxe. Schweiz Med Wochenschr 1986; 116:1172–1175
    [Google Scholar]
  169. Blakebrough IS, Gilles HM. The effect of rifampicin on meningococcal carriage in family contacts in northern Nigeria. J Infect 1980; 2:137–143
    [Google Scholar]
  170. Steen JSM, Stainton-Ellis DM. Rifampicin in pregnancy. Lancet 1977; 1:604–605
    [Google Scholar]
  171. Judson FN, Ehret JM. Single dose ceftriaxone to eradicate pharyngeal Neisseria meningitidis. Lancet 1984; 2:14621463
    [Google Scholar]
  172. Schwartz B, Al-Tobaiqi A, Al-Ruwais A et al. Comparative efficacy of ceftriaxone and rifampicin in eradicating pharyngeal carriage of Group A Neisseria meningitidis. Lancet 1988; 1:1239–1242
    [Google Scholar]
  173. Gaunt PN, Lambert BE. Single dose ciprofloxacin for the eradication of pharyngeal carriage of Neisseria meningitidis. J Antimicrob Chemother 1988; 21:489–496
    [Google Scholar]
  174. Dworzack DL, Sanders CC, Horowitz EA et al. Evaluation of single-dose ciprofloxacin in the eradication of Neisseria meningitidis from nasopharyngeal carriers. Antimicrob Agents Chemother 1988; 32:1740–1741
    [Google Scholar]
  175. Pugsley MP, Dworzack DL, Roccaforte JS et al. An open study of the efficacy of a single dose of ciprofloxacin in eliminating the chronic nasopharyngeal carriage of Neisseria meningitidis. J Infect Dis 1988; 157:852–853
    [Google Scholar]
  176. PHLS Meningococcal Infections Working Group Sporadic cases of meningococcal disease in schools. CDR Weekly 1992; 2:46209
    [Google Scholar]
  177. Hudson PJ, Vogt RL, Heun EM et al. Evidence for school transmission of Neisseria meningitidis during a Vermont outbreak. Pediatr Infect Dis 1986; 5:213–217
    [Google Scholar]
  178. Maher D. A problem with oral rifampicin in the prophylaxis of meningococcal infection. J Infect 1990; 22:98–99
    [Google Scholar]
  179. Stuart JM, Cartwright KAV, Robinson PM, Noah ND. Does eradication of meningococcal carriage in household contacts prevent secondary cases of meningococcal disease?. BMJ 1989; 298:569–570
    [Google Scholar]
  180. Cuevas LE, Hart CA. Chemoprophylaxis of bacterial men ingitis. J Antimicrob Chemother 1993; 31:Suppl B79–91
    [Google Scholar]
  181. Heist GD, Solis-Cohen S, Solis-Cohen M. A study of the virulence for man and of human susceptibility to meningococcal infection; 1922; 7:1–33
    [Google Scholar]
  182. Frasch CE. Vaccines for the prevention of meningococcal disease. Clin Microbiol Rev 1989; 2:SI34–S138
    [Google Scholar]
  183. Tsai CM, Frasch CE, Mocca LF. 5 structural classes of major outer-membrane proteins in Neisseria meningitidis. J Bacteriol 1981; 146:69–78
    [Google Scholar]
  184. Frasch CE, Zollinger WD, Poolman JT. Serotype antigens of Neisseria meningitidis and a proposed scheme for designation of serotypes. Rev Infect Dis 1985; 7:504–510
    [Google Scholar]
  185. Frasch CE. Immunisation against Neisseria meningitidis. In: Easmon CSF, Jeljaszewicz J. (eds) Medical microbiology London: Academic Press;115
    [Google Scholar]
  186. Finne K, Leinonen M, Makela PH. Antigenic similarities between brain components and bacteria causing meningitis. Lancet 1983; 2:355–357
    [Google Scholar]
  187. Lystad A, Aasen S. The epidemiology of meningococcal disease in Norway 1975-1991. NIPH Ann 1991; 14:57–66
    [Google Scholar]
  188. Zollinger W, Boslego J, Moran E et al. Meningococcal serogroup B vaccine: protection trial and follow-up studies in Chile. NIPH Ann 1991; 14:211–213
    [Google Scholar]
  189. Zollinger W, Boslego J, Moran EE, Brandt BL, Cruz C, Martinez M. Effect of vaccination with meningococcal OMP vaccine on subsequent antibody response to natural infections. Proceedings of the Eighth International Pathogenic Neisseria Conference Conde-Glez GM et al. (eds), in press
    [Google Scholar]
  190. Banerjee-Bhatnagar N, Frasch CE. Expression of Neisseria meningitidis iron-regulated outer-membrane proteins, including a 70-kilodalton transferrin receptor, and their potential for use as vaccines. Infect Immun 1990; 58:2875–2881
    [Google Scholar]
  191. van der Ley P, Poolman JT. Construction of a multivalent meningococcal vaccine strain based on the class-1 outer-membrane protein. Infect Immun 1992; 60:3156–3161
    [Google Scholar]
  192. Moxon ER, Rappuoli R. Haemophilus influenzae infections and whooping cough. Lancet 1990; 335:1324–1329
    [Google Scholar]
  193. Devi SJN, Robbins JB, Schneerson S. Antibodies to poly[(2-]8)-alpha-n-acetylneuraminic acid] and poly [(2—]9)-alpha-n-acetylneuraminic acid] are elicited by immunization of mice with Escherichia coli k92 conjugates: potential vaccines for group-B and group-C meningococci and Escherichia coli kl. Proc Natl Acad Sci USA 1991; 88:7175–7179
    [Google Scholar]
  194. Jennings HJ. Capsular polysaccharides as vaccine candidates. Curr Top Microbiol Immunol 1990; 150:97–127
    [Google Scholar]
  195. Saukkonen K, Leinonen M, Abdillahi H, Poolman JT. Comparative evaluation of potential components for group-B meningococcal vaccine by passive protection in the infant rat and in vitro bactericidal assay. Vaccine 1989; 7:325–328
    [Google Scholar]
  196. Barlow AK, Heckels JE, Clarke IN. Molecular-cloning and expression of Neisseria meningitidis class-1 outer-mem- brane protein in Escherichia coli k-12. Infect Immun 1987; 55:2734–2740
    [Google Scholar]
  197. McGuinness BT, Clarke IN, Lambden PR et al. Point mutation in meningococcal por-a gene associated with increased endemic disease. Lancet 1991; 337:514–517
    [Google Scholar]
  198. van der Ley P, Heckels JE, Virji M, Hoogerhout P, Poolman JT. Topology of outer-membrane porins of pathogenic Neisseria spp. Infect Immun 1991; 59:2963–2971
    [Google Scholar]
  199. McGuinness BT, Lambden PR, Heckels JE. Class 1 outer membrane protein of Neisseria meningitidis: Epitope analysis of the antigenic diversity between strains, implications for subtype definition and molecular epidemiology. Mol Microbiol 1993: in press
    [Google Scholar]
  200. Christodoulides M, McGuinness BT, Heckels JE. Immu nisation with synthetic peptides containing epitopes of the class 1 outer membrane protein of Neisseria meningitidis '. production of bactericidal antibodies on immunisation with a cyclic peptide; 1992 (unpublished observations)
    [Google Scholar]
  201. Saukkonen K, Leinonen M, Kayhty H, Abdillahi H, Poolman JT. Monoclonal-antibodies to the rough lipopolysaccha- ride of Neisseria meningitidis protect infant rats from meningococcal infection. J Infect Dis 1988; 158:209–212
    [Google Scholar]
  202. Verheul AFM, Boons GJPH, Vandermarel GA et al. Minimal oligosaccharide structures required for induction of im-mune-responses against meningococcal immunotype 11, 12, and 13, 7,9 lipopolysaccharides determined by using synthetic oligosaccharide-protein conjugates. Infect Immun 1991; 59:3566–3573
    [Google Scholar]
  203. Boons GJPH, Hoogerhout P, Poolman JT, Van der Marel GA, Van Boom JH. Preparation of a well-defined sugar-peptide conjugate—a possible approach to a synthetic vaccine against Neisseria meningitidis. Bioorg Medic Chem Lett 1991; 1:303–308
    [Google Scholar]
  204. Pettersson A, Kuipers B, Pelzer M et al. Monoclonal-antibodies against the 70-kilodalton iron-regulation protein of Neisseria meningitidis are bactericidal and strain specific. Infect Immun 1990; 58:3036–3041
    [Google Scholar]
  205. Griffiths E, Stevenson P, Ray A. Antigenic and molecular heterogeneity of the transferrin-binding protein of Neisseria meningitidis. FEMS Microbiol Lett 1990; 69:31–36
    [Google Scholar]
  206. Rokbi B, Mazarin V, Maitre G, Dupuy M, Quentin-Millet MJ. Molecular mass heterogeneity, antigenic and genomic variability of transferrin binding proteins among Neisseria meningitidis strains. In: Proceedings of the Eighth International Pathogenic Neisseria Conference Conde-Glez GM et al. (eds), in press
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-39-1-3
Loading
/content/journal/jmm/10.1099/00222615-39-1-3
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error