1887

Abstract

Summary

Thirty-five isolates, 21 isolates and four strains of were compared for their ability to agglutinate red blood cells (RBCs). Isolates were examined in a slide haemagglutination assay with RBCs from 11 animal species, including rodents, carnivores and primates, as well as man. RBCs were agglutinated by 65–90% of isolates and 16–57% of isolates. Treatment of with pronase and heat inhibited haemagglutination (HA) whereas heating only of inhibited HA. Treatment of all strains of with trypsin inhibited agglutination of human RBCs; 75% of the treated strains did not agglutinate ferret RBCs. These results suggested that protein(s) may be important haemagglutinins for these bacteria. Variable HA profiles together with varying results after treatment of RBCs with fetuin, D-mannose, and neuraminidase suggested that multiple receptors may be involved in HA reactions with and The observation that and agglutinated RBCs of several species and closely adhered to gastric epithelium supported the hypothesis that adherence plays a role in the colonisation and pathogenicity of and did not adhere to gastric epithelium and did not agglutinate RBCs of any species; nevertheless, can readily colonise and produce gastritis in several mammals.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-37-5-299
1992-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/37/5/medmicro-37-5-299.html?itemId=/content/journal/jmm/10.1099/00222615-37-5-299&mimeType=html&fmt=ahah

References

  1. Marshall B. J., Warren J. R. Unidentified curved bacilli in stomach of patients with gastritis and peptic ulceration. Lancet 1984; 1:1311–1315
    [Google Scholar]
  2. Marshall B. J., Goodwin C. S., Warren J. R. Prospective double blind trial of duodenal ulcer relapse after eradication of Campylobacter pylori. Lancet 1988; 2:1437–1441
    [Google Scholar]
  3. Chen X. G., Correa P., Offerhaus J. Ultrastructure of the gastric mucosa harboring Campylobacter-like organisms. Am J Clin Pathol 1986; 86:575–582
    [Google Scholar]
  4. Fox J. G., Correa P., Taylor N. S. Helicobacter mustelae-associated gastritis in ferrets. An animal model of Helicobacter pylori gastritis in humans. Gastroenterology 1990; 99:352–361
    [Google Scholar]
  5. O’Rourke J., Lee A., Fox J. G. An ultrastructural study of Helicobacter mustelae: evidence of a specific association with gastric mucosa. J Med Microbiol 1992; 36:420–427
    [Google Scholar]
  6. Lee A., Hazell S. L., O’Rourke J., Kouprach S. Isolation of a spiral-shaped bacterium from the cat stomach. Infect Immun 1987; 56:2843–2850
    [Google Scholar]
  7. Paster B. J., Lee A., Fox J. G. Phylogeny of Helicobacter felis sp. nov., Helicobacter mustelae, and related bacteria. Int J Syst Bacteriol 1991; 41:31–38
    [Google Scholar]
  8. Lee A., Fox J. G., Otto G., Murphy J. A small animal model of human Helicobacter pylori active chronic gastritis. Gastroenterology 1990; 99:1315–1323
    [Google Scholar]
  9. Fox J. G., Lee A., Otto G., Taylor N. S., Murphy J. C. Helicobacter felis gastritis in gnotobiotic rats: an animal model of Helicobacter pylori gastritis. Infect Immun 1991; 59:785–791
    [Google Scholar]
  10. Lee A., Krakowka S., Fox J. G., Otto G., Murphy J. C. Helicobacter felis as a cause of gastric lymphoreticular hyperplasia: a confounding factor in canine toxicological studies. Vet Pathol 1992 in press
    [Google Scholar]
  11. Beachey E. H. Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surfaces. J Infect Dis 1981; 143:325–345
    [Google Scholar]
  12. Evans D. J., Evans D. G., Young L. S., Pitt J. Hemagglutination typing of Escherichia coli: definition of seven hemagglutination types. J Clin Microbiol 1980; 12:235–242
    [Google Scholar]
  13. Angel M. A., Burness A. T. H. The attachment of encephalomyo-carditis virus to erythrocytes from several animal species. Virology 1977; 83:428–132
    [Google Scholar]
  14. Sarris A. H., Palade G. E. The sialoglycoproteins of murine erythrocyte ghosts. A modified periodic acid-schiff stain procedure staining unsubstituted and O-acetylated sialyl residues on glycopeptides. J Biol Chem 1979; 254:6724–6731
    [Google Scholar]
  15. Elyar E. H., Madoff M. A., Brody O. Y., Oncley J. L. The contribution of sialic acid to the surface charge of the erythrocyte. J Biol Chem 1962; 237:1992–2000
    [Google Scholar]
  16. Shukla A. K., Schauer R. Fluorimetric determination of unsub stituted and 9 (8)-0-acetylated sialic acids in erythrocyte membranes. Hoppe-Seyler’s Z Physiol Chem 1982; 363:255–262
    [Google Scholar]
  17. Lund B., Lindberg F., Marklund B.-I., Normark S. The PapG protein is the a-D-galactopyranosyl- (l 4)-β-D-galacto-pyranose-binding adhesin of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 1987; 84:5898–5902
    [Google Scholar]
  18. Lund B., Marklund B.-I., Stromberg N., Lindberg F., Karlsson K.-A., Normark S. Uropathogenic Escherichia coli can express serologically identical pili of different receptor binding specificities. Mol Microbiol 1988; 2:255–263
    [Google Scholar]
  19. Evans D. G., Evans D. J., Moulds J. J., Graham D. Y. N-acetylneuramenylactose-binding fibrillar hemagglutinin of Campylobacter pylori: a putative colonization factor antigen. Infect Immun 1988; 56:2896–2906
    [Google Scholar]
  20. Morgan D. R., Fox J. G., Leunk R. D. Comparison of isolates of Helicobacter pylori and Helicobacter mustelae. J Clin Microbiol 1991; 29:395–397
    [Google Scholar]
  21. Lingwood C. A., Pellizzari A., Law H., Sherman P., Drumm B. Gastric glycerolipid as a receptor for Campylobacter pylori. Lancet 1989; 2:238–241
    [Google Scholar]
  22. Evans D. J., Evans D. G., Smith K. E., Graham D. Y. Serum antibody responses to the N-acetylneuraminyllactose-binding hemagglutinin of Campylobacter pylori. Infect Immun 1989; 57:664–667
    [Google Scholar]
  23. Arthur M., Johnson C. E., Rubin R. H. Molecular epidemiology of adhesin and hemolysin virulence factors among uropathogenic Escherichia coli. Infect Immun 1989; 57:303–313
    [Google Scholar]
  24. Emddy L., Carlsson A., Ljungh A., Wadstrom T. Mannose-resistant haemagglutination by Campylobacter pylori. Scand J Infect Dis 1988; 20:353–354
    [Google Scholar]
  25. Nakazawa T., Ishibashi M., Konishi H., Takemoto T., Shigeeda M., Kochiyama T. Hemagglutination activity of Campylobacter pylori. Infect Immun 1989; 57:989–991
    [Google Scholar]
  26. Robinson J., Goodwin C. S., Cooper M., Burke V., Mee B. J. Soluble and cell-associated hemagglutinins of Helicobacter (Campylobacter) pylori. J Med Microbiol 1990; 33:277–284
    [Google Scholar]
  27. Wadstrom T. Helicobacter pylori hemagglutinins. In Menge H. et al. (eds) Helicobacter pylori Berlin: Springer-Verlag; 199019–29
    [Google Scholar]
  28. Smith J. I., Drumm B., Neumann A. W., Policova Z., Sherman P. M. In vitro surface properties of the newly recognized gastric pathogen Helicobacter pylori. Infect Immun 1990; 58:3056–3060
    [Google Scholar]
  29. Neman-Simha V., Megraud F. In vitro model for Campylobacter pylori adherence properties. Infect Immun 1988; 56:3329–3333
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-37-5-299
Loading
/content/journal/jmm/10.1099/00222615-37-5-299
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error