1887

Abstract

Summary

The Phene Plate (PhP) system of biochemical fingerprinting of bacteria is a computerised typing system, based on quantitative measurements of the kinetics of several biochemical reactions of bacteria grown in liquid medium in microtitration plates. For each isolate tested, it yields a biochemical fingerprint comprising several kinds of quantitative data which are useful for establishing similarities among strains with a personal-computer program. In this study, a set of 16 specific substrates was chosen to differentiate strains of of serotype Typhimurium. The system was evaluated for its typability, reproducibility and discriminatory power in tests with a collection of 100 epidemiologically unrelated Typhimurium strains and results were compared with those obtained by phage typing. At an identity level of 0.980, strains were assigned by this method to 51 biochemical phenotypes (BPTs), giving a diversity index of 0.963 and a resolution index of 0.210. In contrast, 24 phage types (PTs) were identified among these isolates (a diversity index of 0.901). The combined use of biochemical fingerprinting by the PhP system and phage typing discriminated 82 phenotypes (a diversity index of 0.994). Stability of markers in each of the methods was also evaluated after subculture of 20 strains for 21 consecutive days. Only nine biochemical reactions were found that were subject to small, but measurable, changes for at least one isolate. These changes slightly decreased the mean similarity coefficients among strains but the overall BPTs of the strains showed changes in four strains (20%). In contrast, eight strains (40%) showed changes in their PTs after this treatment. It is concluded that the PhP system is a highly discriminatory and reproducible method for typing Typhimurium strains. It is easy to perform, and may be used alone or in combination with phage typing in epidemiological studies of Typhimurium strains.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-37-4-245
1992-10-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmm/37/4/medmicro-37-4-245.html?itemId=/content/journal/jmm/10.1099/00222615-37-4-245&mimeType=html&fmt=ahah

References

  1. Barker R. M., Old D. C. Biotypes of Salmonella typhimurium of phage types 49, 204 and 193. J. Med Microbiol 1980; 13:369–371
    [Google Scholar]
  2. Duguid J. P., Anderson E. S., Alfredsson G. A., Barker R., Old D. C. A new biotyping scheme for Salmonella typhimurium and its phylogenetic significance. J Med Microbiol 1975; 8:149–166
    [Google Scholar]
  3. Anderson E. S., Ward L. R., De Saxe M. J., De Sa J. D. H. Bacterio phage-typing designations of Salmonella typhimurium . J Hyg 1977; 78:297–300
    [Google Scholar]
  4. Guinee P. A. M., Jansen W. H., Van Schuylenberg A., Van Leeuwen W. J. Bacteriophage typing of Salmonella typhimurium by use of a mechanized technique. Appl Microbiol 1973; 26:474–477
    [Google Scholar]
  5. Mitchell E., O’Mahoney M., Lynch D. Large outbreak of food poisoning caused by Salmonella typhimurium definitive type 49 in mayonnaise. BMJ 1989; 298:99–101
    [Google Scholar]
  6. Anderson E. S. Drug resistance in Salmonella typhimurium and its implications. BMJ 1968; 3:333–339
    [Google Scholar]
  7. Threlfall E. J., Ward L. R., Rowe B. Epidemic spread of chloramphenicol-resistant strain of Salmonella typhimurium phage type 204 in bovine animals in Britain. Vet Rec 1978; 103:438–440
    [Google Scholar]
  8. Barker R. M. Colicinogeny in Salmonella typhimurium . J Gen Microbiol 1980; 120:21–26
    [Google Scholar]
  9. Kapperud G., Lassen J., Dommarsnes K. Comparison of epidemiological marker methods for identification of Salmonella typhimurium isolates from an outbreak caused by contaminated chocolate. J Clin Microbiol 1989; 27:2019–2024
    [Google Scholar]
  10. Olsvik O., Sorum H., Birkness K. Plasmid characterization of Salmonella typhimurium transmitted from animals to humans. J Clin Microbiol 1985; 22:336–338
    [Google Scholar]
  11. Riley L. W., Di Ferdinando G. T., De Melfi T. M., Cohen M. L. Evaluation of isolated cases of salmonellosis by plasmid profile analysis: introduction and transmission of bacterial clone by precooked roast beef. J Infect Dis 1983; 148:12–17
    [Google Scholar]
  12. Taylor D. N., Wachsmuth I. K., Shankuan Y. H. Salmonellosis associated with marijuana. A multistate outbreak traced by plasmid fingerprinting. N Engl J Med 1982; 306:1249–1253
    [Google Scholar]
  13. Platt D. J., Brown D. J., Old D. C., Barker R. M., Munro D. S., Taylor J. Old and new techniques together resolve a problem of infection by Salmonella typhimurium . Epidemiol Infect 1987; 99:137–142
    [Google Scholar]
  14. Brunner F., Margadant A., Peduzzi R., Piffaretti J. C. The plasmid pattern as an epidemiological tool for Salmonella typhimurium epidemics: comparison with the lysotype. J Infect Dis 1983; 148:7–11
    [Google Scholar]
  15. Holmberg S. D., Wachsmuth I. K., Hickman-Brenner F. W., Cohen M. L. Comparison of plasmid profile analysis, phage typing, and antimicrobial susceptibility testing in characterizing >Salmonella typhimurium isolates from outbreaks. J Clin Microbiol 1984; 19:100–104
    [Google Scholar]
  16. Barker R., Old D. C. Biotyping and colicine typing of Salmonella typhimurium strains of phage type 141 isolated in Scotland. J Med Microbiol 1979; 12:265–276
    [Google Scholar]
  17. McDonough P. L., Timoney J. F., Jacobson R. H., Khakhria R. Clonal groups of Salmonella typhimurium in New York State. J Clin Microbiol 1989; 27:622–627
    [Google Scholar]
  18. Wray C., McLaren I., Parkinson N. M., Beedell Y. Differentiation of Salmonella typhimurium DT204c by plasmid profile and biotyping. Vet Rec 1987; 121:514–516
    [Google Scholar]
  19. Barker R. M., Old D. C. The usefulness of biotyping in studying the epidemiology and phylogeny of salmonellae. J Med Microbiol 1989; 29:81–88
    [Google Scholar]
  20. Barker R. M., Old D. C., Sharp J. C. M. Phage type/biotype groups of Salmonella typhimurium in Scotland 1974–6: variation during spread of epidemic clones. J Hyg 1980; 84:115–125
    [Google Scholar]
  21. Lewis M. J., Stocker B. A. D. A biochemical subdivision of one phage type of Salmonella typhimurium . J Hyg 1971; 69:683–691
    [Google Scholar]
  22. Kristensen M., Bojlen K., Faarup C. Bakteriologisk-epidemio-logiske erfaringer om infektioner med gasteroenteritis baciller af paratyfusgruppen. Bibltk Laeger 1937; 129:310–375
    [Google Scholar]
  23. Kuhn I. Biochemical fingerprinting of Escherichia coli: a simple method for epidemiological investigations. J Microbiol Methods 1985; 3:159–170
    [Google Scholar]
  24. Lilleengen K. Typing of Salmonella typhimurium by means of bacteriophage. Acta Pathol Microbiol Scand 1948 Suppl LXXVII
    [Google Scholar]
  25. Kuhn I., Burman L. G., Eriksson L., Mollby R. Subtyping of Klebsiella by biochemical fingerprinting: a simple system for epidemiological investigations. J Microbiol Methods 1990; 11:177–185
    [Google Scholar]
  26. Sneath P. H. A., Sokal R. Numerical taxonomy: the principles and practice of numerical classification. San Francisco: WH Freeman; 1973
    [Google Scholar]
  27. Hunter P. R. Reproducibility and indices of discriminatory power of microbial typing methods. J Clin Microbiol 1990; 28:1903–1905
    [Google Scholar]
  28. Katouli M., Kuhn I., Mollby R. Evaluation of the stability of biochemical phenotypes of Escherichia coli upon subculturing and storage. J Gen Microbiol 1990; 136:1681–1688
    [Google Scholar]
  29. Anderson E. S., Ward L. R., De Saxe M. J., Old D. C., Barker R., Duguid J. P. Correlation of phage type, biotype and source in strains of Salmonella typhimurium . J Hyg 1978; 81:203–217
    [Google Scholar]
  30. Old D. C., Barker R. M. Numerical index of the discriminatory ability of biotyping for strains of Salmonella typhimurium and Salmonella paratyphi . B. Epidemiol Infect 1989; 103:435–443
    [Google Scholar]
  31. Kuhn I., Franklin A., Soderlind O., Mollby R. Phenotypic variations among enterotoxigenic Escherichia coli from Swedish piglets with diarrhoea. Med Microbiol Immunol 1985; 174:119–130
    [Google Scholar]
  32. Kuhn I., Mollby R. Phenotyping variations among enteron toxigenic O-groups of Escherichia coli from various human populations. Med Microbiol Immunol 1986; 175:15–26
    [Google Scholar]
  33. Katouli M., Kuhn I., Mollby R. Biochemical phenotypes of enteropathogenic Escherichia coli common to Iran and Sweden. J Med Microbiol 1991; 35:270–277
    [Google Scholar]
  34. Levine M. M., Ristaino P., Sack R. P., Kaper J. B., Ørskov F., Ørskovm I. Colonization factor antigens I and II and type 1 somatic pili in enterotoxigenic Escherichia coli: relation to enterotoxin type. Infect Immun 1983; 39:889–897
    [Google Scholar]
  35. Evans D. J., Evans D. G., DuPont H. L., Ørskov F., Ørskov I. Pattern of loss of enterotoxigenicity by Escherichia coli isolated from adults with diarrhea: suggestive evidence for an interrelationship with serotype. Infect Immun 1977; 17:105–111
    [Google Scholar]
  36. Ørskov F., Ørskov I. Summary of workshop on the clone concept in epidemiology, taxonomy and evolution of the Enterobacteriaceae and other bacteria. J Infect Dis 1983; 148:346–357
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-37-4-245
Loading
/content/journal/jmm/10.1099/00222615-37-4-245
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error