1887

Abstract

Summary

An elastase of was purified by ion exchange chromatography on CM-Sepharose and characterised. Its M is . 21 kDa, its optimal temperature for activity is 42°C and the pH optimum is 6.8. The enzyme is activated by cysteine and other SH-donators and inhibited by l-trans-epoxy-succinylleucylamido-(4-guanidino)butane (E64), an inhibitor of cysteine proteases, but not by 3,4-dichloroisocoumarin (3,4-DCI), an inhibitor of serine proteases. This finding suggests that the elastase of is a cysteine protease. Because elastase degrades human sIgA, IgM, serum albumin, fibrinogen, and fibronectin, this enzyme may be regarded as a virulence factor.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-37-3-201
1992-09-01
2022-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/37/3/medmicro-37-3-201.html?itemId=/content/journal/jmm/10.1099/00222615-37-3-201&mimeType=html&fmt=ahah

References

  1. Obernesser H. J., Döling G., Botzenhart K. Extrazelluläre Toxine von Pseudomonas aeruginosa, I. Reinigung und Charakterisierung zweier Exoproteasen. Zentralbl Bakteriol Hyg A 1981; 249:76–88
    [Google Scholar]
  2. Heck L. W., Alarcon P. G., Kulhavy R. M., Morihara K., Russell M. W., Mestecky J. F. Degradation of IgA by Pseudomonas aeruginosa elastase. J Immunol 1990; 144:2253–2257
    [Google Scholar]
  3. Tripathi K. K., Kaur M., Gupta M., Gupta K. G. Production and partial characterization of elastase of Vibrio cholerae Inaba . Zentralbl Bakteriol 1989; 271:431–441
    [Google Scholar]
  4. Döring G., Obernesser H. J., Botzenhart K. Extrazelluläre Toxinevon Pseudomonas aeruginosa, II. Einwirkung zweier gereinigter Proteasen auf die menschlichen Immuglobuline IgG, IgA und sekretorisches IgA. Zentralbl Bakteriol Hyg, A 1981; 249:89–98
    [Google Scholar]
  5. Döring G., Pfestorf M., Botzenhart K., Abdallah M. A. Impact of proteases on iron uptake of Pseudonomas aeruginosa pyoverdin from transferrin and lactoferrin. Infect Immun 1988; 56:291–293
    [Google Scholar]
  6. Potempa J., Dubin A., Korzus G., Travis J. Degradation of elastin by a cysteine proteinase from Staphylococcus aureus . J Biol Chem 1988; 263:2664–2667
    [Google Scholar]
  7. Kothary M. H., Kreger A. S. Production and partial characterization of an elastolytic protease of Vibrio vulnificus . Infect Immun 1985; 50:534–540
    [Google Scholar]
  8. Wretlind B., Pavlovskis O. R. Pseudonomas aeruginosa elastase and its role in pseudomonas infections. Rev Infect Dis 1983; 5: Suppl 5998–1004
    [Google Scholar]
  9. Varadi D. P., Saqueton A. C. Elastase from Staphylococcus epidermidis . Nature 1968; 218:468–470
    [Google Scholar]
  10. Murphy R. A. Elastase production by oral staphylococci. J DentRes 1974; 53:832–834
    [Google Scholar]
  11. Gatermann S., Marre R., Heesemann J., Henkel W. Hemagglutinating and adherence properties of Staphylococcus saprophyticus: epidemiology and virulence in experimental urinary tract infection of rats. FEMS Microbiol Immunol 1988; 47:179–168
    [Google Scholar]
  12. Hartman D. P., Murphy R. A. Production and detection of staphylococcal elastase. Infect Immun 1977; 15:59–65
    [Google Scholar]
  13. Laemmli U. K. Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  14. Blum H., Beier H., Gross H.-J. Improved silver staining of plant proteins R. N. A. and DNA in polyacrylamide gels. Electrophoresis 1987; 8:93–99
    [Google Scholar]
  15. Nakajima K., Powers J. C., Ashe B. M., Zimmerman M. Mapping the extended substrate binding site of cathepsin G and human leukocyte elastase. Studies with peptide substrates related to the α1-protease-inhibitor reactive site. J Biol Chem 1979; 254:4027–4032
    [Google Scholar]
  16. Janda J. M. Elastolytic activity among staphylococci. J Clin Microbiol 1986; 24:945–946
    [Google Scholar]
  17. Watts J. L., Naidu A. S., Wadstrom T. Collagen binding, elastase production, and. slime production associated with coagulase-negative staphylococci isolated from bovine intramammary infections. J Clin Microbiol 1990; 28:580–583
    [Google Scholar]
  18. Plaut A. G. The IgAl proteases of pathogenic bacteria. Annu Rev Microbiol 1983; 37:603–622
    [Google Scholar]
  19. Maeda H., Molla A. Pathogenic potentials of bacterial proteases. Clin Chimica Acta 1989; 185:357–368
    [Google Scholar]
  20. Mestecky H., McGhee J. R. Immun oglobulin A (IgA): molecular and cellular interactions involved in IgA biosynthesis and immune response. Adv Immunol 1987; 40:153–245
    [Google Scholar]
  21. Wadstrom T. Molecular aspects on pathogenesis of wound and foreign body infections due to staphylococci. Zentralbl Bakteriol Microbiol Hyg A 1987; 266:191–211
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-37-3-201
Loading
/content/journal/jmm/10.1099/00222615-37-3-201
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error