Skip to content
1887

Abstract

Summary

An outer-membrane protein (OMP) was isolated from a clinical strain of . Changes in growth media did not appreciably affect the appearance of this protein in crude outer-membrane preparations examined by SDS-PAGE. However, the proportion of the protein relative to other OMPs was greater in 24-h cultures than in 48-h cultures. The protein could not be readily solubilised by various conventional detergent extraction techniques but treatment of the insoluble material at 100°C with SDS released the protein, as did overnight extraction at 37°C with SDS. This OMP was heat-modifiable, and thus was similar to the OmpA protein of , with a faster mobility on SDS-PAGE when solubilised at 25°C than at 100°C. The critical temperature for conversion was between 80°C and 90°C. Because of the characteristic heat-modifiability, the protein was called HMP-1 (heat modifiable protein-1). Overnight exposure to EDTA or NaCl at 37°C favoured conversion of the 25°C form to the 100°C form. In intact cells, the protein was labelled by a cell-surface radio-iodination procedure, and thus is at least partially exposed at the cell surface. No reactions between the HMP-1 and antibodies to either OmpA or porin were found by Western blot analysis. A OM preparation containing predominantly HMP-1 had pore-forming ability in a liposome assay. This study is the first report of the isolation and characterisation of a heat-modifiable OMP in , and it is the first description of pore-forming activity in a Bacteroides OM fraction.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-37-3-165
1992-09-01
2025-11-07

Metrics

Loading full text...

Full text loading...

References

  1. Nikaido H., Vaara M. Outer membrane. In Neidhardt F. C., Ingraham J. L., Low K. B. (eds) Escherichia coli and Salmonella typhimuriunr: cellular and molecular biology vol 1 Washington, D. C.: American Society for Microbiology; 19877–22
    [Google Scholar]
  2. Inouye M. (ed) Bacterial outer membranes as model systems New York: John Wiley and Sons; 1987
    [Google Scholar]
  3. Rosenbusch J. P. Structural and functional properties of porin channels in E. coli outer membranes. Experientia 1990; 46:167–173
    [Google Scholar]
  4. Rosenbusch J. P. Characterization of the major envelope protein from Escherichia coli . J Biol Chem 1974; 249:8019–8029
    [Google Scholar]
  5. Garavito R. M., Rosenbusch J. P. Isolation and crystallization of bacterial porin. Methods Enzymol 1986; 125:309–328
    [Google Scholar]
  6. Nikaido H. Structure and functions of the cell envelope of gram-negative bacteria. Rev Infect Dis 1988; 10: Suppl 2S279–S281
    [Google Scholar]
  7. Nikaido H., Rosenberg E. Y. Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J Bacteriol 1983; 153:241–252
    [Google Scholar]
  8. Nikaido H., Rosenberg E. Y., Foulds J. Porin channels in Escherichia coli: studies with ß-lactams in intact cells. J Bacteriol 1983; 153:232–240
    [Google Scholar]
  9. Nikaido H. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob Agents Chemother 1989; 33:1831–1836
    [Google Scholar]
  10. Piddock L. J., Wise R. Newer mechanisms of resistance to beta-lactam antibiotics in gram-negative bacteria. J Antimicrob Chemother 1985; 16:279–284
    [Google Scholar]
  11. Harder K. J., Nikaido H., Matsuhashi M. Mutants of Escherichia coli that are resistant to certain beta-lactam compounds lack the ompF porin. Antimicrob Agents Chemother 1981; 20:549–552
    [Google Scholar]
  12. Medeiros A. A., O’Brien T. F., Rosenberg E. Y., Nikaido H. Loss of OmpC porin in a strain of Salmonella typhimurium causes increased resistance to cephalosporins during therapy. J Infect Dis 1987; 156:751–757
    [Google Scholar]
  13. Hancock R. E. W., Nikaido H. Outer membranes of gram-negative bacteria. XIX. Isolation from Pseudomonas aeruginosa PA01 and use in reconstitution and definition of the permeability barrier. J Bacteriol 1978; 136:381–390
    [Google Scholar]
  14. Yoshimura F., Nikaido H. Diffusion of ß-lactam antibiotics through the porin channels of Escherichia coli K-12. Antimicrob Agents Chemother 1985; 27:84–92
    [Google Scholar]
  15. Nikaido H. Bacterial resistance to antibiotics as a function of outer membrane permeability. J Antimicrob Chemother 1988; 22: Suppl. A 17–22
    [Google Scholar]
  16. Nikaido H. Role of permeability barriers in resistance to beta-lactam antibiotics. Pharmacol Ther 1985; 27:197–231
    [Google Scholar]
  17. Cuchural G. J., Tally F. P., Jacobus N. V., Marsh P. K., Mayhew J. W. Cefoxitin inactivation by Bacteroides fragilis . Antimicrob Agents Chemother 1983; 24:936–940
    [Google Scholar]
  18. Cuchural G. J., Hurlbut S., Malamy M. H., Tally F. P. Permeability to beta-lactams in Bacteroides fragilis . J Antimicrob Chemother 1988; 22:785–790
    [Google Scholar]
  19. Eley A., Greenwood D. Beta-lactamases of type culture strains of the Bacteroides fragilis group and of strains that hydrolyse cefoxitin, latamoxef and imipenem. J Med Microbiol 1986; 21:49–57
    [Google Scholar]
  20. Yotsuji A., Minami S., Inoue M., Mitsuhashi S. Properties of novel ß-lactamase produced by Bacteroides fragilis . Antimicrob Agents Chemother 1983; 24:925–929
    [Google Scholar]
  21. Finegold S. M. General aspects of anaerobic infections. In Finegold S. M., George W. L. (eds) Anaerobic infections in humans San Diego: Academic Press; 1989137–153
    [Google Scholar]
  22. Diedrich D. L., Martin A. E. Outer membrane proteins of the Bacteroides fragilis group . Curr Microbiol 1981; 6:85–88
    [Google Scholar]
  23. Kotarski S. F., Salyers A. A. Isolation and characterization of outer membranes of Bacteroides thetaiotaomicron grown on different carbohydrates. J Bacteriol 1984; 158:102–109
    [Google Scholar]
  24. Malouin F., Lamothe F. The role of beta-lactamase and the permeability barrier on the activity of cephalosporins against members of the Bacteroides fragilis group. Can J Microbiol 1987; 33:262–266
    [Google Scholar]
  25. Holdemann L. V., Cato E. P., Moore W. E. C. Anaerobe laboratory manual. 4th edn Blacksburg V. A. Virginia Polytechnic Institute and State University; 1977
    [Google Scholar]
  26. Sutter V. L., Citron D. M., Edelstein M. A. C., Finegold S. M. Wads worth anaerobic bacteriology manual. 4th edn Belmont C. A. Star Publishing Co; 1985
    [Google Scholar]
  27. Varel V. H., Bryant M. P. Nutritional features of Bacteroides fragilis subsp. fragilis . Appl Microbiol 1974; 28:251–257
    [Google Scholar]
  28. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. DNA packaging events. J Mol Biol 1973; 80:575–599
    [Google Scholar]
  29. Hager D. A., Burgess R. R. Elution of proteins from sodium dodecyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: results with sigma subunit of Escherichia coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Anal Biochem 1980; 109:76–86
    [Google Scholar]
  30. Hatch F. T. Correlation of amino-acid composition with certain characteristics of proteins. Nature 1965; 206:777–779
    [Google Scholar]
  31. Capaldi R. A., Vanderkooi G. The low polarity of many mem brane proteins. Proc Natl Acad Sci USA 1972; 69:930–932
    [Google Scholar]
  32. Tsang V. C. W., Peralta J. M., Simons A. R. Enzyme-linked immuno-electrotransfer blot techniques (EITB) for studying the specificities of antigens and antibodies separated by gel electrophoresis. Methods Enzymol 1983; 92:377–391
    [Google Scholar]
  33. Nikaido H., Rosenberg E. Y. Effect of solute size on diffusion rates through the transmembrane pores of the outer membranes of Escherichia coli . J Gen Physiol 1981; 77:121–135
    [Google Scholar]
  34. Nikaido H. Proteins forming large channels from bacterial and mitochondrial outer membranes: porins and phage lambda receptor proteins. In Fleischer S., Fleischer B. (eds) Methods in enzymology vol 97 Biomembranes New York: Academic Press; 198385–100
    [Google Scholar]
  35. Bakken V., Jensen H. B. Outer membrane proteins of Fuso-bacterium nucleatum Fevl. J Gen Microbiol 1986; 132:1069–1078
    [Google Scholar]
  36. Schnaitman C. A. Solubilization of the cytoplasmic membrane of Escherichia coli by Triton X-100. J Bacteriol 1971; 108:545–552
    [Google Scholar]
  37. Mitsuyama J., Hiruma R., Yamaguchi A., Sawai T. Identification of porins in outer membranes of Proteus, Morganella, and Providencia spp. and their role in outer membrane permeation of ß-lactams. Antimicrob Agents Chemother 1987; 31:379–384
    [Google Scholar]
  38. Hancock R. E. W., Decad G. M., Nikaido H. Identification of the protein producing transmembrane diffusion pores in the outer membrane of Pseudomonas aeroginosa PA01. Bio-chifti Biophys Acta 1979; 554:323–331
    [Google Scholar]
  39. Nakamura H., Mizushima S. Effects of heating in dodecyl sulfate solution on the conformation and electrophoretic mobility of isolated major outer membrane proteins from Escherichia coli K12. J Biochem 1976; 80:1411–1422
    [Google Scholar]
  40. McMichael J. C., Ou J. T. Metal ion dependence of a heat-modifiable protein from the outer membrane of Escherichia coli upon sodium dodecyl sulfate-gel electrophoresis. J Bacteriol 1977; 132:314–320
    [Google Scholar]
  41. Bakken V., Aare S., Jensen H. B. Purification and partial characterization of a major outer-membrane protein of Fuso-bacterium nucleatum . J Gen Microbiol 1989; 135:3253–3262
    [Google Scholar]
  42. Schweizer M., Hindennach I., Garten W., Henning U. Major proteins of the Escherichia coli outer cell envelope mem brane. Interaction of Protein II with lipopolysaccharide. EurJ Biochem 1978; 82:211–217
    [Google Scholar]
  43. Beher M. G., Schnaitman C. A., Pugsley A. P. Major heat-modi fiable outer membrane protein in gram-negative bacteria: comparison with the OmpA protein of Escherichia coli . J Bacteriol 1980; 143:906–913
    [Google Scholar]
  44. Frasch C. E., Mocca L. F. Heat-modifiable outer membrane proteins of Neisseria meningitidis and their organization within the membrane. J Bacteriol 1978; 136:1127–1134
    [Google Scholar]
  45. Verstreate D. R., Creasy M. T., Caveney N. T., Balswin C. L., Blab M. W., Winter A. J. Outer membrane proteins of Brucella abortus: isolation and characterization. Infect Immun 1982; 35:979–989
    [Google Scholar]
  46. Nikaido H., Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev 1985; 49:1–32
    [Google Scholar]
  47. Page W. J., Huyer G., Huyer M., Worobec E. A. Characterization of the porins of Campylobacter jejuni and Campylobacter coli and implications for antibiotic susceptibility. Antimicrob Agents Chemother 1989; 33:297–303
    [Google Scholar]
  48. Buscher K. H., Cullmann W., Dick W., Wendt S., Opferkuch W. Imipenem resistance in Pseudomonas aeroginosa is due to diminished expression of outer membrane proteins. J Infect Dis 1987; 156:681–684
    [Google Scholar]
  49. Parr T. R., Moore R. A., Moore L. V., Hancock R. E. W. Role of porins in intrinsic antibiotic resistance of Pseudomonas cepacia . Antimicrob Agents Chemother 1987; 31:121–123
    [Google Scholar]
  50. Sawai T., Hiruma R., Kawana N., Kaneko M., Taniyasu F., Inami A. Outer membrane permeation of ß-lactam antibiotics in Escherichia coli, Proteus mirabilis, and Enterobacter cloacae . Antimicrob Agents Chemother 1982; 22:585–592
    [Google Scholar]
  51. Trias J., Dufresne J., Levesque R. C., Nikaido H. Decreased outer membrane permeability in imipenem-resistant mutants of Pseudomonas aeruginosa . Antimicrob Agents Chemother 1989; 33:1201–1206
    [Google Scholar]
  52. Godfrey A. J., Bryan L. E. Penetration of ß-lactams throughPseudomonas aeruginosa porin channels. Antimicrob Agents Chemother 1987; 31:1216–1221
    [Google Scholar]
  53. Crosby M. A., Gump D. W. Activity of cefoperazone and two ß-lactamase inhibitors, sulbactam and clavulanic acid, against Bacteroides spp. correlated with ß-lactamase production. Antimicrob Agents Chemother 1982; 22:398–405
    [Google Scholar]
  54. Olsson B., Dombusch K., Nord C. E. Factors contributing to resistance to beta-lactam antibiotics in Bacteroides fragilis . Antimicrob Agents Chemother 1979; 15:263–268
    [Google Scholar]
  55. Takada H., Ogawa T., Yoshimura F. Immunological activities of a porin fraction isolated from Fusobacterium nucleatum ATCC 10953. Infect Immun 1988; 56:855–863
    [Google Scholar]
  56. DiRienzo J. M., Rosan B. Isolation of a major cell envelope protein from Fusobacterium nucleatum . Infect Immun 1984; 44:386–393
    [Google Scholar]
  57. Kaufman J., DiRienzo J. M. Isolation of a corncob (coaggregation) receptor polypeptide from Fusobacterium nucleatum . Infect Immun 1989; 57:331–337
    [Google Scholar]
  58. Wexlerk H., Halebian S. Alterations to the penicillin-binding proteins in the Bacteroides fragilis group; a mechanism for non-ß-lactamase mediated cefoxitin resistance. J Antimicrob Chemother 1990; 26:7–20
    [Google Scholar]
  59. Piddock L. J. V., Wise R. Cefoxitin resistance in Bacteroides species: evidence indicating two mechanisms causing decreased susceptibility. J Antimicrob Chemother 1987; 19:161–170
    [Google Scholar]
  60. Albert M. J., Rajan D. P., Mathan V. I. In vitro susceptibility to metronidazole of bacteria from the small intestine of tropical sprue patients. Ind J Med Res 1984; 79:333–336
    [Google Scholar]
  61. Jarlier V., Gutmann L., Nikaido H. Interplay of cell wall barrier and ß-lactamase activity determines high resistance to ß-lactam antibiotics in Mycobacterium chelonae . Antimicrob Agents Chemother 1991; 35:1937–1939
    [Google Scholar]
/content/journal/jmm/10.1099/00222615-37-3-165
Loading
/content/journal/jmm/10.1099/00222615-37-3-165
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error