1887

Abstract

Summary

An outer-membrane protein (OMP) was isolated from a clinical strain of . Changes in growth media did not appreciably affect the appearance of this protein in crude outer-membrane preparations examined by SDS-PAGE. However, the proportion of the protein relative to other OMPs was greater in 24-h cultures than in 48-h cultures. The protein could not be readily solubilised by various conventional detergent extraction techniques but treatment of the insoluble material at 100°C with SDS released the protein, as did overnight extraction at 37°C with SDS. This OMP was heat-modifiable, and thus was similar to the OmpA protein of , with a faster mobility on SDS-PAGE when solubilised at 25°C than at 100°C. The critical temperature for conversion was between 80°C and 90°C. Because of the characteristic heat-modifiability, the protein was called HMP-1 (heat modifiable protein-1). Overnight exposure to EDTA or NaCl at 37°C favoured conversion of the 25°C form to the 100°C form. In intact cells, the protein was labelled by a cell-surface radio-iodination procedure, and thus is at least partially exposed at the cell surface. No reactions between the HMP-1 and antibodies to either OmpA or porin were found by Western blot analysis. A OM preparation containing predominantly HMP-1 had pore-forming ability in a liposome assay. This study is the first report of the isolation and characterisation of a heat-modifiable OMP in , and it is the first description of pore-forming activity in a Bacteroides OM fraction.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-37-3-165
1992-09-01
2022-01-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/37/3/medmicro-37-3-165.html?itemId=/content/journal/jmm/10.1099/00222615-37-3-165&mimeType=html&fmt=ahah

References

  1. Nikaido H., Vaara M. Outer membrane. In Neidhardt F. C., Ingraham J. L., Low K. B. (eds) Escherichia coli and Salmonella typhimuriunr: cellular and molecular biology vol 1 Washington, D. C.: American Society for Microbiology; 19877–22
    [Google Scholar]
  2. Inouye M. (ed) Bacterial outer membranes as model systems New York: John Wiley and Sons; 1987
    [Google Scholar]
  3. Rosenbusch J. P. Structural and functional properties of porin channels in E. coli outer membranes. Experientia 1990; 46:167–173
    [Google Scholar]
  4. Rosenbusch J. P. Characterization of the major envelope protein from Escherichia coli . J Biol Chem 1974; 249:8019–8029
    [Google Scholar]
  5. Garavito R. M., Rosenbusch J. P. Isolation and crystallization of bacterial porin. Methods Enzymol 1986; 125:309–328
    [Google Scholar]
  6. Nikaido H. Structure and functions of the cell envelope of gram-negative bacteria. Rev Infect Dis 1988; 10: Suppl 2S279–S281
    [Google Scholar]
  7. Nikaido H., Rosenberg E. Y. Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J Bacteriol 1983; 153:241–252
    [Google Scholar]
  8. Nikaido H., Rosenberg E. Y., Foulds J. Porin channels in Escherichia coli: studies with ß-lactams in intact cells. J Bacteriol 1983; 153:232–240
    [Google Scholar]
  9. Nikaido H. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob Agents Chemother 1989; 33:1831–1836
    [Google Scholar]
  10. Piddock L. J., Wise R. Newer mechanisms of resistance to beta-lactam antibiotics in gram-negative bacteria. J Antimicrob Chemother 1985; 16:279–284
    [Google Scholar]
  11. Harder K. J., Nikaido H., Matsuhashi M. Mutants of Escherichia coli that are resistant to certain beta-lactam compounds lack the ompF porin. Antimicrob Agents Chemother 1981; 20:549–552
    [Google Scholar]
  12. Medeiros A. A., O’Brien T. F., Rosenberg E. Y., Nikaido H. Loss of OmpC porin in a strain of Salmonella typhimurium causes increased resistance to cephalosporins during therapy. J Infect Dis 1987; 156:751–757
    [Google Scholar]
  13. Hancock R. E. W., Nikaido H. Outer membranes of gram-negative bacteria. XIX. Isolation from Pseudomonas aeruginosa PA01 and use in reconstitution and definition of the permeability barrier. J Bacteriol 1978; 136:381–390
    [Google Scholar]
  14. Yoshimura F., Nikaido H. Diffusion of ß-lactam antibiotics through the porin channels of Escherichia coli K-12. Antimicrob Agents Chemother 1985; 27:84–92
    [Google Scholar]
  15. Nikaido H. Bacterial resistance to antibiotics as a function of outer membrane permeability. J Antimicrob Chemother 1988; 22: Suppl. A 17–22
    [Google Scholar]
  16. Nikaido H. Role of permeability barriers in resistance to beta-lactam antibiotics. Pharmacol Ther 1985; 27:197–231
    [Google Scholar]
  17. Cuchural G. J., Tally F. P., Jacobus N. V., Marsh P. K., Mayhew J. W. Cefoxitin inactivation by Bacteroides fragilis . Antimicrob Agents Chemother 1983; 24:936–940
    [Google Scholar]
  18. Cuchural G. J., Hurlbut S., Malamy M. H., Tally F. P. Permeability to beta-lactams in Bacteroides fragilis . J Antimicrob Chemother 1988; 22:785–790
    [Google Scholar]
  19. Eley A., Greenwood D. Beta-lactamases of type culture strains of the Bacteroides fragilis group and of strains that hydrolyse cefoxitin, latamoxef and imipenem. J Med Microbiol 1986; 21:49–57
    [Google Scholar]
  20. Yotsuji A., Minami S., Inoue M., Mitsuhashi S. Properties of novel ß-lactamase produced by Bacteroides fragilis . Antimicrob Agents Chemother 1983; 24:925–929
    [Google Scholar]
  21. Finegold S. M. General aspects of anaerobic infections. In Finegold S. M., George W. L. (eds) Anaerobic infections in humans San Diego: Academic Press; 1989137–153
    [Google Scholar]
  22. Diedrich D. L., Martin A. E. Outer membrane proteins of the Bacteroides fragilis group . Curr Microbiol 1981; 6:85–88
    [Google Scholar]
  23. Kotarski S. F., Salyers A. A. Isolation and characterization of outer membranes of Bacteroides thetaiotaomicron grown on different carbohydrates. J Bacteriol 1984; 158:102–109
    [Google Scholar]
  24. Malouin F., Lamothe F. The role of beta-lactamase and the permeability barrier on the activity of cephalosporins against members of the Bacteroides fragilis group. Can J Microbiol 1987; 33:262–266
    [Google Scholar]
  25. Holdemann L. V., Cato E. P., Moore W. E. C. Anaerobe laboratory manual. 4th edn Blacksburg V. A. Virginia Polytechnic Institute and State University; 1977
    [Google Scholar]
  26. Sutter V. L., Citron D. M., Edelstein M. A. C., Finegold S. M. Wads worth anaerobic bacteriology manual. 4th edn Belmont C. A. Star Publishing Co; 1985
    [Google Scholar]
  27. Varel V. H., Bryant M. P. Nutritional features of Bacteroides fragilis subsp. fragilis . Appl Microbiol 1974; 28:251–257
    [Google Scholar]
  28. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. DNA packaging events. J Mol Biol 1973; 80:575–599
    [Google Scholar]
  29. Hager D. A., Burgess R. R. Elution of proteins from sodium dodecyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: results with sigma subunit of Escherichia coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Anal Biochem 1980; 109:76–86
    [Google Scholar]
  30. Hatch F. T. Correlation of amino-acid composition with certain characteristics of proteins. Nature 1965; 206:777–779
    [Google Scholar]
  31. Capaldi R. A., Vanderkooi G. The low polarity of many mem brane proteins. Proc Natl Acad Sci USA 1972; 69:930–932
    [Google Scholar]
  32. Tsang V. C. W., Peralta J. M., Simons A. R. Enzyme-linked immuno-electrotransfer blot techniques (EITB) for studying the specificities of antigens and antibodies separated by gel electrophoresis. Methods Enzymol 1983; 92:377–391
    [Google Scholar]
  33. Nikaido H., Rosenberg E. Y. Effect of solute size on diffusion rates through the transmembrane pores of the outer membranes of Escherichia coli . J Gen Physiol 1981; 77:121–135
    [Google Scholar]
  34. Nikaido H. Proteins forming large channels from bacterial and mitochondrial outer membranes: porins and phage lambda receptor proteins. In Fleischer S., Fleischer B. (eds) Methods in enzymology vol 97 Biomembranes New York: Academic Press; 198385–100
    [Google Scholar]
  35. Bakken V., Jensen H. B. Outer membrane proteins of Fuso-bacterium nucleatum Fevl. J Gen Microbiol 1986; 132:1069–1078
    [Google Scholar]
  36. Schnaitman C. A. Solubilization of the cytoplasmic membrane of Escherichia coli by Triton X-100. J Bacteriol 1971; 108:545–552
    [Google Scholar]
  37. Mitsuyama J., Hiruma R., Yamaguchi A., Sawai T. Identification of porins in outer membranes of Proteus, Morganella, and Providencia spp. and their role in outer membrane permeation of ß-lactams. Antimicrob Agents Chemother 1987; 31:379–384
    [Google Scholar]
  38. Hancock R. E. W., Decad G. M., Nikaido H. Identification of the protein producing transmembrane diffusion pores in the outer membrane of Pseudomonas aeroginosa PA01. Bio-chifti Biophys Acta 1979; 554:323–331
    [Google Scholar]
  39. Nakamura H., Mizushima S. Effects of heating in dodecyl sulfate solution on the conformation and electrophoretic mobility of isolated major outer membrane proteins from Escherichia coli K12. J Biochem 1976; 80:1411–1422
    [Google Scholar]
  40. McMichael J. C., Ou J. T. Metal ion dependence of a heat-modifiable protein from the outer membrane of Escherichia coli upon sodium dodecyl sulfate-gel electrophoresis. J Bacteriol 1977; 132:314–320
    [Google Scholar]
  41. Bakken V., Aare S., Jensen H. B. Purification and partial characterization of a major outer-membrane protein of Fuso-bacterium nucleatum . J Gen Microbiol 1989; 135:3253–3262
    [Google Scholar]
  42. Schweizer M., Hindennach I., Garten W., Henning U. Major proteins of the Escherichia coli outer cell envelope mem brane. Interaction of Protein II with lipopolysaccharide. EurJ Biochem 1978; 82:211–217
    [Google Scholar]
  43. Beher M. G., Schnaitman C. A., Pugsley A. P. Major heat-modi fiable outer membrane protein in gram-negative bacteria: comparison with the OmpA protein of Escherichia coli . J Bacteriol 1980; 143:906–913
    [Google Scholar]
  44. Frasch C. E., Mocca L. F. Heat-modifiable outer membrane proteins of Neisseria meningitidis and their organization within the membrane. J Bacteriol 1978; 136:1127–1134
    [Google Scholar]
  45. Verstreate D. R., Creasy M. T., Caveney N. T., Balswin C. L., Blab M. W., Winter A. J. Outer membrane proteins of Brucella abortus: isolation and characterization. Infect Immun 1982; 35:979–989
    [Google Scholar]
  46. Nikaido H., Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev 1985; 49:1–32
    [Google Scholar]
  47. Page W. J., Huyer G., Huyer M., Worobec E. A. Characterization of the porins of Campylobacter jejuni and Campylobacter coli and implications for antibiotic susceptibility. Antimicrob Agents Chemother 1989; 33:297–303
    [Google Scholar]
  48. Buscher K. H., Cullmann W., Dick W., Wendt S., Opferkuch W. Imipenem resistance in Pseudomonas aeroginosa is due to diminished expression of outer membrane proteins. J Infect Dis 1987; 156:681–684
    [Google Scholar]
  49. Parr T. R., Moore R. A., Moore L. V., Hancock R. E. W. Role of porins in intrinsic antibiotic resistance of Pseudomonas cepacia . Antimicrob Agents Chemother 1987; 31:121–123
    [Google Scholar]
  50. Sawai T., Hiruma R., Kawana N., Kaneko M., Taniyasu F., Inami A. Outer membrane permeation of ß-lactam antibiotics in Escherichia coli, Proteus mirabilis, and Enterobacter cloacae . Antimicrob Agents Chemother 1982; 22:585–592
    [Google Scholar]
  51. Trias J., Dufresne J., Levesque R. C., Nikaido H. Decreased outer membrane permeability in imipenem-resistant mutants of Pseudomonas aeruginosa . Antimicrob Agents Chemother 1989; 33:1201–1206
    [Google Scholar]
  52. Godfrey A. J., Bryan L. E. Penetration of ß-lactams throughPseudomonas aeruginosa porin channels. Antimicrob Agents Chemother 1987; 31:1216–1221
    [Google Scholar]
  53. Crosby M. A., Gump D. W. Activity of cefoperazone and two ß-lactamase inhibitors, sulbactam and clavulanic acid, against Bacteroides spp. correlated with ß-lactamase production. Antimicrob Agents Chemother 1982; 22:398–405
    [Google Scholar]
  54. Olsson B., Dombusch K., Nord C. E. Factors contributing to resistance to beta-lactam antibiotics in Bacteroides fragilis . Antimicrob Agents Chemother 1979; 15:263–268
    [Google Scholar]
  55. Takada H., Ogawa T., Yoshimura F. Immunological activities of a porin fraction isolated from Fusobacterium nucleatum ATCC 10953. Infect Immun 1988; 56:855–863
    [Google Scholar]
  56. DiRienzo J. M., Rosan B. Isolation of a major cell envelope protein from Fusobacterium nucleatum . Infect Immun 1984; 44:386–393
    [Google Scholar]
  57. Kaufman J., DiRienzo J. M. Isolation of a corncob (coaggregation) receptor polypeptide from Fusobacterium nucleatum . Infect Immun 1989; 57:331–337
    [Google Scholar]
  58. Wexlerk H., Halebian S. Alterations to the penicillin-binding proteins in the Bacteroides fragilis group; a mechanism for non-ß-lactamase mediated cefoxitin resistance. J Antimicrob Chemother 1990; 26:7–20
    [Google Scholar]
  59. Piddock L. J. V., Wise R. Cefoxitin resistance in Bacteroides species: evidence indicating two mechanisms causing decreased susceptibility. J Antimicrob Chemother 1987; 19:161–170
    [Google Scholar]
  60. Albert M. J., Rajan D. P., Mathan V. I. In vitro susceptibility to metronidazole of bacteria from the small intestine of tropical sprue patients. Ind J Med Res 1984; 79:333–336
    [Google Scholar]
  61. Jarlier V., Gutmann L., Nikaido H. Interplay of cell wall barrier and ß-lactamase activity determines high resistance to ß-lactam antibiotics in Mycobacterium chelonae . Antimicrob Agents Chemother 1991; 35:1937–1939
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-37-3-165
Loading
/content/journal/jmm/10.1099/00222615-37-3-165
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error