1887

Abstract

Summary

Susceptibilities to cefotaxime (Ctx) and ceftazidime (Caz) were examined for 90 recent clinical isolates of from Greek hospitals. Most (68%) of the isolates were resistant to both drugs, and all were resistant to cefoxitin. β-Lactamase activities against cephaloridine in crude extracts from Ctx-Caz-resistant isolates were high, irrespective of whether or not the cells were grown with cefoxitin as an inducer of the chromosomal -lactamase, indicating stable derepression of the gene for the enzyme. On the other hand, double disk antagonism tests showed that all the Ctx-Caz-sensitive isolates possessed inducible expression of this -lactamase. Iso-electric focusing revealed the presence of five forms of the chromosomal -lactamase, randomly distributed amongst the Ctx-Cazresistant and -sensitive isolates. Plasmid-mediated -lactamases of TEM and PSE types also were found in many isolates. These data indicate that the extremely high prevalence of Ctx-Caz-resistant isolates in Greek hospitals is attributed to the dissemination of mutants which constitutively overproduce the class-I chromosomal -lactamase. Over 90% of these isolates exhibited cross-resistance to aminoglycosides, suggesting the accumulation of unrelated antibiotic resistance mechanisms.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-37-2-91
1992-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/37/2/medmicro-37-2-91.html?itemId=/content/journal/jmm/10.1099/00222615-37-2-91&mimeType=html&fmt=ahah

References

  1. Lindberg F., Normark S. Common mechanism of AmpC β–lactamase induction in enterobacteria: regulation of the cloned Enterobacter cloacae P99 β–lactamase gene. J Bacteriol 1987; 169:758–763
    [Google Scholar]
  2. Nicolas M.–H., Honore N., Jarlier V., Philippon A., Cole S. T. Molecular genetic analysis of cephalosporinase production and its role in β–lactam resistance in clinical isolates of Enterobacter cloacae . Antimicrob Agents Chemother 1987; 31:295–299
    [Google Scholar]
  3. Wiedemann B. Genetic and biochemical basis of resistance of Enterobacteriaceae to β–lactam antibiotics. J Antimicrob Chemother 1986; 18: Suppl B 31–38
    [Google Scholar]
  4. Dworzack D. L., Pugsley M. P., Sanders C. C., Horowitz E. A. Emergence of resistance in gram–negative bacteria during therapy with expanded–spectrum cephalosporins. Eur J Clin Microbiol 1987; 6:456–459
    [Google Scholar]
  5. Johnson M. P., Ramphal R. β–Lactam–resistant Enterobacter bacteremia in febrile neutropenic patients receiving monotherapy. J Infect Dis 1990; 162:981–983
    [Google Scholar]
  6. Giamerellou H. Aminoglycosides plus beta–lactams against gram–negative organism. Am J Med 1986; 80: Suppl 6B126–137
    [Google Scholar]
  7. Working Party of the British Society for Antimicrobial Chemotherapy Breakpoints in in–vitro antibiotic sensitivity testing. J Antimicrob Chemother 1988; 21:701–710
    [Google Scholar]
  8. Anonymous Incidence of inducible beta–lactamases in gram–negative septicemia isolates from twenty–nine European laboratories. Eur J Clin Microbiol 1987; 6:460–466
    [Google Scholar]
  9. O’Callaghan C. H., Muggleton P. W., Ross G. W. Effects of β– lactamase from gram–negative organisms on cephalosporins and penicillin. In Hobby G. L. (ed) Antimicrobial agents and chemotherapy Bethesda M. D.; 196957–63
    [Google Scholar]
  10. Matthew M., Harris A. M., Marshall M. J., Ross G. W. The use of analytical isoelectric focusing for detection and identification of β–lactamases. J Gen Microbiol 1975; 88:169–178
    [Google Scholar]
  11. Sanders C. C., Sanders W. E., Moland E. S. Characterization of β–lactamases in situ on polyacrylamide gels. Antimicrob Agents Chemother 1986; 30:951–952
    [Google Scholar]
  12. Flynn D. M., Weinstein R. A., Nathan C., Gaston M. A., Kabins S. A. Patients’ endogenous flora as the source of “nosocomial” Enterobacter in cardiac surgery. J Infect Dis 1987; 156:363–368
    [Google Scholar]
  13. Mortimer J., Miller S., Black D., Kwok K., Kirby W. M. Comparison of cefoperazone and mezlocillin with imipenem as empiric therapy in febrile neutropenic cancer patients. Am J Med 1988; 85:17–20
    [Google Scholar]
  14. Moritz V. A., Carson P. B. D. Cefoxitin sensitivity as a marker for inducible beta–lactamases. J Med Microbiol 1986; 21:203–207
    [Google Scholar]
  15. Lindh E., Dombusch K., Jalakas K., Forsgren A. Antibiotic susceptibility and β–lactamase production in clinical isolates of Enterobacter spp. APMIS 1990; 98:462–470
    [Google Scholar]
  16. Yang Y., Livermore D. M., Williams R. J. Chromosomal β–lactamase expression and antibiotic resistance in Enterobacter cloacae . J Med Microbiol 1988; 25:227–233
    [Google Scholar]
  17. Livermore D. M. Do β–lactamases ‘trap’ cephalosporins?. J Antimicrob Chemother 1985; 15:511–514
    [Google Scholar]
  18. Normark S. Mechanisms of β–lactamase induction in entero bacteria. Med Malad Infect 1989; 19:13–15
    [Google Scholar]
  19. Sanders C. C., Sanders W. E. Type I β–lactamases of gram–negative bacteria: interactions with β–lactam antibiotics. J Infect Dis 1986; 154:792–800
    [Google Scholar]
  20. Weinstein R. A. Endemic emergence of cephalosporin resistant Enterobacter: relation to prior therapy. Infect Control Hosp Epidemiol 1986; 7:120–123
    [Google Scholar]
  21. Bush K., Tanaka S. K., Bonner D. P., Sykes R. B. Resistance by decreased penetration of β–lactam antibiotics into Enterobacter cloacae . Antimicrob Agents Chemother 1985; 27:555–560
    [Google Scholar]
  22. Greek Society for Microbiology Antibiotic resistance among gram–negative bacilli in 19 Greek hospitals. J Hosp Infect 1989; 14:177–181
    [Google Scholar]
  23. Legakism N. J., Koukoubanis N., Malliara K., Michalitsianos D., Papavassiliou J. Importance of carbenicillin and gentamicin cross–resistant serotype O: 12 Pseudomonas aeruginosa in six Athens hospitals. Eur J Clin Microbiol 1987; 6:300–303
    [Google Scholar]
  24. Pitt T. L., Livermore D. M., Pitcher D., Vatopoulos A. C., Legakis N. J. Multi–resistant serotype O: 12 Pseudomonas aeruginosar: evidence for a common strain in Europe. Epidemiol Infect 1989; 103:565–576
    [Google Scholar]
  25. Vatopoulos A. C., Philippon A., Tzouvelekis L. S., Komninou Z., Legakis N. J. Prevalence of a transferable SHV–5 type β–lactamase in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Greece. J Antimicrob Chemother 1990; 26:635–648
    [Google Scholar]
  26. Vatopoulos A. C., Tzouvelekis L. S., Tzelepi E., Legakis N. J. Cross resistance to norfloxacin and other antimicrobial agents among clinical isolates of gram–negative bacteria. Int J Exp Clin Chemother 1990; 3:201–205
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-37-2-91
Loading
/content/journal/jmm/10.1099/00222615-37-2-91
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error