1887

Abstract

Summary

One hundred and forty-two coagulase-negative staphylococci (CNS) isolated from dialysate effluent or skin of patients receiving continuous ambulatory peritoneal dialysis (CAPD) were typed by extended antibiogram (16 antibiotics) and biotype (26 reactions). These isolates were then typed by supplementary methods to determine the most suitable typing method for an epidemiological study of antibiotic resistance. These included phage typing, reverse phage typing, plasmid typing, whole-cell protein typing by SDS-PAGE with analysis by densitometry, and immunoblotting. The percentage of isolates typed successfully by the supplementary methods were: phage typing 20%, reverse phage typing 0%, plasmid typing 66%, SDS-PAGE 100%, immunoblotting 100%. The discrimination of each method was: phage typing 20%, plasmid typing 37%, SDS-PAGE 69%, immunoblotting 57%. Reproducibility was 88% for phage typing and 97% for plasmid typing. The reproducibility of the whole-cell protein typing was 83% if the same extracts were used but only 43% when separate protein extracts were analysed on separate occasions. However, strain relatedness was highly reproducible. The determination of an antibiogram-biotype profile was not a sufficiently accurate typing method for an epidemiological study of antibiotic resistance. Whole-cell protein typing by SDS-PAGE or immunoblotting was technically demanding but was the most effective of the supplementary methods for detecting erroneous discrimination and false matching produced by antibiogram-biotype combinations.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-37-2-109
1992-08-01
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/jmm/37/2/medmicro-37-2-109.html?itemId=/content/journal/jmm/10.1099/00222615-37-2-109&mimeType=html&fmt=ahah

References

  1. Eykyn S. J. Staphylococcal sepsis: the changing pattern of disease and therapy. Lancet 1988; 1:100–104
    [Google Scholar]
  2. Ludlam H. A., Noble W. C., Marples R. R., Phillips I. The evaluation of a typing scheme for coagulase-negative staphylococci suitable for epidemiological studies. 3. J Med Microbiol 1989; 30:161–165
    [Google Scholar]
  3. Ludlam H. A., Noble W. C., Marples R. R., Bayston R., Phillips I. The epidemiology of peritonitis caused by coagulase-negative staphylococci in continuous ambulatory peritoneal dialysis. J Med Microbiol 1989; 30:167–174
    [Google Scholar]
  4. Mickelsen P. A., Plorde J. J., Gordon K. P. Instability of antibiotic resistance in a strain of Staphylococcus epidermidis isolated from an outbreak of prosthetic valve endocarditis. J Infect Dis 1985; 152:50–58
    [Google Scholar]
  5. Etienne J., Renaud F., Bes M. Instability of characteristics amongst coagulase-negative staphylococci causing endocarditis. J Med Microbiol 1990; 32:115–122
    [Google Scholar]
  6. Clink L., Pennington T. H. Staphylococcal whole-cell polypeptideanalysis: evaluation as a taxonomic and typing tool. J Med Microbiol 1987; 23:41–44
    [Google Scholar]
  7. Thomson-Carter F. M., Pennington T. H. Characterisation of methicillin-resistant isolates of Staphylococcus aureus by analysis of whole-cell and exported proteins. J Med Microbiol 1989; 28:25–32
    [Google Scholar]
  8. Gaston M. A., Duff P. S., Naidoo J. Evaluation of electro phoretic methods for typing methicillin-resistant Staphylococcus aureus . J Med Microbiol 1988; 26:189–197
    [Google Scholar]
  9. Stephenson J. R., Tabaqchali S. New method for typing co agulase-negative staphylococci. J Clin Pathol 1986; 39:1271–1275
    [Google Scholar]
  10. Burnie J. P., Lee W., Matthews R. C., Bayston R. Immunoblot fingerprinting of coagulase-negative staphylococci. J Clin Pathol 1988; 41:103–107
    [Google Scholar]
  11. Kersters K., de Ley J. Identification and grouping of bacteria by numerical analysis of their electrophoretic protein patterns. J Gen Microbiol 1975; 87:333–342
    [Google Scholar]
  12. Costas M., Cookson B. D., Talsania H. G., Owen R. j. Numerical analysis of electrophoretic protein patterns of methicillin-resistant strains of Staphylococcus aureus . J Clin Microbiol 1989; 27:2574–2581
    [Google Scholar]
  13. Cunningham M. J., Noble W. C. SDS-PAGE protein patterns of yeasts from human sources. Mycoses 1989; 32:344–348
    [Google Scholar]
  14. Ludlam H. A., Nwachukwu B., Noble W. C., Swan A. V., Phillips I. The preservation of micro-organisms in biological specimens stored at – 70 °C. J Appl Bacteriol 1989; 67:417–423
    [Google Scholar]
  15. Brown D., Blowers R. Disc methods of sensitivity testing and other semiquantitative methods. In Reeves D. S., Phillips I., Williams J. D., Wise R. (eds) Laboratory methods in antimicrobial chemotherapy Edinburgh: Churchill Livingstone; 19788–30
    [Google Scholar]
  16. Dean B. A., Williams R. E. O., Hall F., Corse J. Phage typing of coagulase-negative staphylococci and microcococci. J Hyg 1973; 71:261–270
    [Google Scholar]
  17. De Saxe M. J., Crees-Morris J. A., Marples R. R., Richardson J. F. Evaluation of current phage-typing systems for coagulase-negative staphylococci. Zentralbl Bakteriol Mikrobiol 1981 Suppl 10197–204
    [Google Scholar]
  18. Richardson J. F., Chittasobhon N., Marples R. R. Supplementary phages for the investigation of strains of methicillin-resistant Staphylococcus aureus . J Med Microbiol 1988; 25:67–74
    [Google Scholar]
  19. Degener J. E., Naidoo J. L., Noble W. C., Phillips I., Marples R. R. Carriage of gentamicin-resistant coagulase-negative staphylococci in patients on continuous ambulatory peritoneal dialysis. J Antimicrob Chemother 1987; 19:505–512
    [Google Scholar]
  20. Hancock I. C., Poxton I. R. Bacterial cell surface techniques. Chichester: John Wiley and Sons Ltd; 1988191–192
    [Google Scholar]
  21. Jackman P. J. H. Classification of Corynebacterium species from axillary skin by numerical analysis of electrophoretic protein patterns. J Med Microbiol 1982; 15:485–492
    [Google Scholar]
  22. Sneath P. H. A., Sokal R. R. Numerical taxonomy: the principles and practice of numerical classification. San Francisco W. H. Freeman; 1973
    [Google Scholar]
  23. Marples R. R. Laboratory assessment in the epidemiology of infections caused by coagulase-negative staphylococci. J Med Microbiol 1986; 22:285–295
    [Google Scholar]
  24. Martím-De-Nicolás M. M., Vindel A., Sáez-Nieto J. A. Develop ment of a new set of phages as an epidemiological marker in Staphylococcus epidermidis causing nosocomial infections. Epidemiol Infect 1990; 104:111–118
    [Google Scholar]
  25. Barzilai A., Hyatt A. C., Hodes D. S. Demonstration of differences between strains of Staphylococcus aureus by peptidoglycan fingerprinting. J Infect Dis 1984; 150:583–588
    [Google Scholar]
  26. Coia J. E., Thompson-Carter F., Baird D., Platt D. J. Charac terisation of methicillin-resistant Staphylococcus aureus by biotyping, immunoblotting and restriction enzyme fragmentation patterns. J Med Microbiol 1990; 31:125–132
    [Google Scholar]
  27. Pierre J., Gutmann L., Bomet M., Bergogne-Berezin E., Williamson R. Identification of coagulase-negative staphylococci by electrophoretic profile of total proteins and analysis of penicillin-binding proteins. J Clin Microbiol 1990; 28:443–146
    [Google Scholar]
  28. Thomson-Carter F. M., Carter P. E., Pennington T. H. Differen tiation of staphylococcal species and strains by ribosomal RNA gene restriction patterns. J Gen Microbiol 1989; 135:2093–2097
    [Google Scholar]
  29. Freeman R., Gould F. K., Wilkinson R., Ward A. C., Lightfoot N. F., Sisson P. R. Rapid inter-strain comparison by pyrolysis mass spectrometry of coagulase-negative staphylococci from persistent CAPD peritonitis. Epidemiol Infect 1991; 106:239–246
    [Google Scholar]
/content/journal/jmm/10.1099/00222615-37-2-109
Loading
/content/journal/jmm/10.1099/00222615-37-2-109
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error