1887

Abstract

Summary

A firmly adherent mass of slime plus organisms (biofilm) accumulates on the sides of culture tubes when some strains of coagulase-negative staphylococci are grown in a chemically-defined medium containing [C]glucose. This mass was washed (to remove labelled medium) and then counted after adding scintillation fluid. Organisms from the liquid culture were also washed and counted to check that [C]glucose had been utilised to label the bacteria. Nine strains were examined in this way, and the results were compared with those obtained with four older techniques for recognising slime production or adherent bacteria. The new method is quick, and has advantages of reproducibility and good discrimination between strains; there was a 15-fold difference in counts in the biofilm between slime-producing and non-producing strains respectively. With the new radiolabel assay, the effects of several antibacterial compounds on the build-up of the biofilm were investigated with four slime-producing strains. Tunicamycin, chloramphenicol and 5-fluorouracil, at levels below their minimum growth-inhibitory concentrations, each greatly diminished biofilm formation; several other drugs had less effect.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-37-1-62
1992-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/37/1/medmicro-37-1-62.html?itemId=/content/journal/jmm/10.1099/00222615-37-1-62&mimeType=html&fmt=ahah

References

  1. Brandt L., Swahn B. Subacute bacterial endocarditis due to coagulase-negative Staphylococcus albus . Acta Med Scand 1960; 166:125–132
    [Google Scholar]
  2. Pulverer G., Pillich J. Pathogenic significance of coagulase-negative staphylococci. In Finland M., Margret W., Bartmann K. (eds) Bacterial infections: change in their causative agents, trend and possible basis Bayer Symposium No. 3 Berlin: Springer Verlag; 197191–96
    [Google Scholar]
  3. Callaghan R. P., Cohen S. J., Stewart G. T. Septicemia due to colonization of Spitz-Holter valves by staphylococci. Five cases treated with methicillin. BMJ 1961; 1:860–863
    [Google Scholar]
  4. Peters G., Locci R., Pulverer G. Microbial colonization of prosthetic devices. II. Scanning electron microscopy of naturally infected intravenous catheters. Zentralbl Bakteriol Mikrobiol Hyg 1 Abt Orig B 1981; 173:293–299
    [Google Scholar]
  5. Costerton J. W., Marrie T. T. The mode of bacterial growth on metal and plastic prosthesis that become foci of bacterial infections. Annual Meeting of the American Society for Microbiology, New Orleans 1983 Abstract No. B183
    [Google Scholar]
  6. Mayberry-Carson K. J., Tober-Meyer B., Smith J. K., Lambe D. W., Costerton J. W. Bacterial adherence and glycocalyx formation in osteomyelitis experimentally induced with Staphylococcus aureus . Infect Immun 1984; 43:825–833
    [Google Scholar]
  7. Costerton J. W., Nickel J. C., Marrie T. J. The role of bacterial glycocalyx and of the biofilm mode of growth in bacterial pathogenesis. Roche Sem Bact 1985; 2:1–25
    [Google Scholar]
  8. Costerton J. W., Cheng K.-J., Geesey G. G. Bacterial biofilms in nature and disease. Annu Rev Microbiol 1987; 41:435–464
    [Google Scholar]
  9. Khoury T., Costerton J. W. Biofilms in nature and medicine. In Phillip K. P., Fleer A. (eds) 3rd ECC Symposium on foreign body-related infections Amsterdam: Excerpta Medica; 19872–15
    [Google Scholar]
  10. Christensen G. D., Simpson W. A., Bisno A. L., Beachey E. H. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun 1982; 37:318–326
    [Google Scholar]
  11. Peters G., Locci R., Pulverer G. Adherence and growth of coagulase-negative staphylococci on surfaces of intravascular catheters. J Infect Dis 1982; 146:479–482
    [Google Scholar]
  12. Younger J. J., Christensen G. D., Bartley D. L., Simmons J. C. H., Barrett F. F. Coagulase-negative staphylococci isolated from cerebrospinal fluid shunts: importance of slime production, species identification, and shunt removal to clinical outcome. J Infect Dis 1987; 156:548–554
    [Google Scholar]
  13. Diaz-Mitoma F., Harding G. K. M., Hoban D. J., Robers R. S., Low D. E. Clinical significance of a test for slime production in ventriculoperitoneal shunt infection caused by coagulase-negative staphylococci. J Infect Dis 1987; 156:555–560
    [Google Scholar]
  14. Sugarman B., Young E. J. (eds) Infections associated with prosthetic devices Boca Raton: C. R. C Press; 1984
    [Google Scholar]
  15. Pulverer G. On the pathogenicity of coagulase-negative sta phylococci. In Jeljaszewicz J. (ed) The staphylococci Stuttgart: Gustav Fischer Verlag; 19851–9
    [Google Scholar]
  16. Peters G. Staphylococcal plastic foreign body infections-evidence and pathogenesis. In Jeljaszewicz J. (ed) The staphylococci Stuttgart: Gustav Fischer Verlag; 1985515–524
    [Google Scholar]
  17. Hussain M., Hastings J. G. M., White P. J. Isolation and composition of the extracellular slime made by coagulase-negative staphylococci in a chemically-defined medium. J Infect Dis 1991; 163:534–541
    [Google Scholar]
  18. Christensen G. D., Simpson W. A., Bisno A. L., Beachey E. H. Experimental foreign body infections in mice challenged with slime-producing Staphylococcus epidermidis . Infect Immun 1983; 40:407–410
    [Google Scholar]
  19. Christensen G. D., Bisno A. L., Parisi J. T., McLaughlin B., Hester M. G., Luther R. W. Nosocomial septicemia due to multiply antibiotic-resistant Staphylococcus epidermidis . Ann Intern Med 1982; 96:1–10
    [Google Scholar]
  20. Kloos W. E., Schleifer K. H. Simplified scheme for routine identification of human Staphylococcus species. J Clin Microbiol 1975; 1:82–88
    [Google Scholar]
  21. Hussain M., Hastings J. G. M., White P. J. A chemically defined medium for slime production by coagulase-negative staphylococci. J Med Microbiol 1991; 34:143–147
    [Google Scholar]
  22. Ramus J. Alcian blue: a quantitative aqueous assay for algalacids and sulfated polysaccharides. J Phycol 1977; 13:345–348
    [Google Scholar]
  23. Christensen G. D., Simpson W. A., Younger J. J. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 1985; 22:996–1006
    [Google Scholar]
  24. Bergmeyer H. U., Bemt E. Glucose: determination with glucose oxidase and peroxidase. In Bergmeyer H. U. (ed) Methods of enzymatic analysis London: Academic Press; 19741205–1211
    [Google Scholar]
  25. Peters G., Schumacher-Perdreau F., Jansen B., Bey M., Pulverer G. Biology of Staphylococcus epidermidis slime. In Pul-verer G., Quie P. G., Peters G. (eds) Pathogenicity and clinical significance of coagulase-negative staphylococci Stuttgart: Gustav Fischer Verlag Zentralbl Bakteriol Mikrobiol Hyg; (Suppl 16) 198715–32
    [Google Scholar]
  26. Ludwicka A., Uhlenbruck G., Peters G. Investigation on extracellular slime substance produced by Staphylococcus epidermidis. Zentralbl Bakteriol Mikrobiol Hyg (A) 1984; 258:256–267
    [Google Scholar]
  27. Pfaller M., Davenport D., Bale M., Barrett M., Koontz F., Massanari R. M. Development of the quantitative microtest for slime production by coagulase-negative staphylococci. Eur J Clin Microbiol 1989; 7:30–33
    [Google Scholar]
  28. Hogt A. H., Dankert J., Feijen J. Adhesion of Staphylococcus epidermidis and Staphylococcus saprophyticus to a hydrophobic biomaterial. J Gen Microbiol 1985; 131:2485–2491
    [Google Scholar]
  29. Pascual A., Fleer A., Westerdaal N. A., Vrhoef J. Modulation of adherence of coagulase-negative staphylococci to Teflon catheters in vitro . Eur J Clin Microbiol 1986; 5:518–522
    [Google Scholar]
  30. Drewry D. T., Galbraith L., Wilkinson B. J., Wilkinson S. G. Staphylococcal slime: a cautionary tale. J Clin Microbiol 1990:281292–1296
    [Google Scholar]
  31. Van Pett K., Schurman D. J., Smith R. L. Quantitation of relative distribution of extracellular matrix in Staphylococcus epidermidis biofilm. J Orthop Res 1990; 8:321–327
    [Google Scholar]
  32. Ward J. B. Teichoic and teichuronic acids: biosynthesis, assembly, and location. Microbiol Rev 1981; 45:211–243
    [Google Scholar]
  33. Rogers H. J., Perkins H. R. 5-Fluorouracil and mucopeptide biosynthesis by Staphylococcus auerus . Biochem J 1960; 77:448–459
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-37-1-62
Loading
/content/journal/jmm/10.1099/00222615-37-1-62
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error