1887

Abstract

Summary

The four subclasses of IgG have different structures, functions and implications in the antibody response. IgG subclass reactions to individual structural antigens in 22 adolescents and young adults with cystic fibrosis (CF) were studied qualitatively and quantitatively by densitometric analysis of Western blot assays. These patients had been infected by for 7 years or longer and were divided into two groups according to their pulmonary status: Group 1 comprised 11 patients with relatively good pulmonary status; Group 2 consisted of 11 patients with poor pulmonary status. There was a relative decrease of IgG1 and a relative increase of IgG2 and, especially, of IgG3 and IgG4 antibodies against antigens in the CF patients. Comparison of the two CF patient groups showed a significant increase in the proportion of IgG3 in the Group 2 patients. This could be a potential cause or effect in the deterioration of their pulmonary function. Densitometric analysis of Western blots revealed more than 24 antigens and indicated those that were the targets of the isotype antibody response(s) that were apparently most harmful. Thus, there was a significant increase of IgG2 or IgG3 reactivity (or of both) against proteins F, H (H1 and H2), and I in the Group 2 patients. One other striking observation of this study was the high reactivity of IgG4 antibodies to protein H. IgG4 was the major antibody to this protein in seven of the 11 Group 1 patients compared to two of the 11 in Group 2. We hypothesise that IgG4 antibodies may antagonise IgG2 antibodies, helping to preserve stable pulmonary function.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-36-6-437
1992-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/36/6/medmicro-36-6-437.html?itemId=/content/journal/jmm/10.1099/00222615-36-6-437&mimeType=html&fmt=ahah

References

  1. Reynolds H. Y., Levine A. S., Wood R. E., Zierdt C. H., Dale D. C., Pennington J. E. Pseudomonas aeruginosa infections: persisting problems and current research to find new therapies. Ann Intern Med 1975; 82:819–831
    [Google Scholar]
  2. Wood R. E., Boat T. F., Doershuk C. F. Cystic fibrosis: state of the art. Am Rev Resp Dis 1976; 113:833–878
    [Google Scholar]
  3. Hoiby N., Andersen V., Bendixen G. Pseudomonas aeruginosa infection in cystic fibrosis. Humoral and cellular immune responses against Pseudomonas aeruginosa. APMIS 4 Sect C 1975; 83:459–468
    [Google Scholar]
  4. Schietz P. O. Systemic and mucosal immunity and non-specific defense mechanisms in cystic fibrosis patients. Acta Pediatr Scand 1982; 301:55–62
    [Google Scholar]
  5. Moss R. B., Lewiston N. J. Immune complexes and humoral response to Pseudomonas aeruginosa in cystic fibrosis. Am Rev Resp Dis 1980; 121:23–29
    [Google Scholar]
  6. Wheeler W. B., Williams M., Matthews W. J., Colten H. R. Pro gression of cystic fibrosis lung disease as a function of serum immunoglobulin G levels: A 5-year longitudinal study. J Pediatr 1984; 104:695–699
    [Google Scholar]
  7. Disis M. L., McDonald T. L., Colombo J. L., Kobayashi R. H., Angle C. R., Murray S. Circulating immune complexes in cystic fibrosis and their correlation to clinical parameters. Pediatr Res 1986; 20:385–390
    [Google Scholar]
  8. Lagace J., Mercier J, Fréchette M. Circulating immune complexes, antibodies to Pseudomonas aeruginosa, and pulmonary status in cystic fibrosis. J Clin Lab Immunol 1989; 30:7–11
    [Google Scholar]
  9. HØiby N., SchiØtz P. O. Immune complex mediated tissue damage in the lungs of cystic fibrosis patients with chronic Pseudomonas aeruginosa infection. Acta Paediatr Scand 1982; 301:63–73
    [Google Scholar]
  10. Fick R. B., Baltimore R. S., Squier S. U., Reynolds H. Y. IgG proteolytic activity of Pseudomonas aeruginosa in cystic fibrosis. J Infect Dis 1985; 154:589–598
    [Google Scholar]
  11. Wisnieski J. J., Todd E. W., Fuller R. K. Immune complexes and complement abnormalities in patients with cystic fibrosis. Am Rev Resp Dis 1985; 132:770–776
    [Google Scholar]
  12. Fick R. B., Olchowski J., Squier S. U., Merrill W. W., Reynolds H. Y. Immunoglobulin-G subclasses in cystic fibrosis. Am Rev Resp Dis 1986; 133:418–422
    [Google Scholar]
  13. Moss R. B., Hsu Y. P., Sullivan M. M., Lewiston N. J. Altered antibody isotype in cystic fibrosis: possible role in opsonic deficiency. Pediatr Res 1986; 20:453–459
    [Google Scholar]
  14. Shryock T. R., Molle J. S., Klinger J. D., Thomassen M. J. Association with phagocytic inhibition of anti-Pseudomonas aeruginosa immunoglobulin G antibody subclass levels in serum from patients with cystic fibrosis. J Clin Microbiol 1986; 23:513–516
    [Google Scholar]
  15. Fomsgaard A., HØiby N., Shand G. H., Conrad R. S., Galanos C. Longitudinal study of antibody response to lipopoly-saccharides during chronic Pseudomonas aeruginosa lung infection in cystic fibrosis. Infect Immun 1988; 56:2270–2278
    [Google Scholar]
  16. Pressler T., Mansa B., Jensen T., Pedersen S. S., Hoiby N., Koch C. Increased IgG2 and IgG3 concentration is associated with advanced Pseudomonas aeruginosa infection and poor pulmonary function in cystic fibrosis. Acta Pediatr Scand 1988; 77:576–582
    [Google Scholar]
  17. Albus A., Saalmann M., Tesch H., Pedersen S. S., Döring G. Increased levels of IgG subclasses specific for Pseudomonas aeruginosa exoenzyme and polysaccharide antigens in chronically infected patients with cystic fibrosis. APMIS 1989; 97:1146–1148
    [Google Scholar]
  18. Eichler I., Joris L., Hsu Y. -P., Van Wye J., Bram R., Moss R. B. Nonopsonic antibodies in cystic fibrosis. J Clin Invest 1989; 84:1794–1804
    [Google Scholar]
  19. Alexander M. D., Andrews J. A., Leslie R. G. Q., Wood N. J. The binding of human and guinea-pig IgG subclasses to homologous macrophage and monocyte Fc receptors. Immunology 1978; 35:115–123
    [Google Scholar]
  20. Perelmutter L. IgG4 and the immune system. Clin Rev Allergy 1983; 1:267–287
    [Google Scholar]
  21. Seppälä I. J. T., Rautonen N., Sarnesto A., Mattila P. A., Mäkelä O. The percentage of six immunoglobulin isotypes in human antibodies to tetanus toxoid: standardization of isotype-specific second antibodies in solid-phase assay. Eur J Immunol 1984; 14:868–875
    [Google Scholar]
  22. Schumaker V. N., Calcott M. A., Spiegelberg H. L., Müller-Eberhard H. J. Ultracentrifuge studies of the binding of IgG of different subclasses to the Clq subunit of the first component of complement. Biochemistry 1976; 15:5175–5181
    [Google Scholar]
  23. Van Der Meulen F. W., Van Der Hart M., Fleer A., Von Dem Born A. E. G., Engelfriet C. P., Van Loghem J. J. The role of adherence to human mononuclear phagocytes in the destruction of red cells sensitized with non-complement binding IgG antibodies. Br J Haematol 1978; 38:541–549
    [Google Scholar]
  24. Briles D. E., Forman C., Hudak S., Claflin J. L. The effects of subclass on the ability of anti-phosphocholine antibodies to protect mice from fatal infection with Streptococcus pneumoniae. J Mol Cell Immunol 1984; 1:305–309
    [Google Scholar]
  25. Ptak W., Flood P. M., Janeway C. A., Marcinkiewicz J., Green D. R. Immunoregulatory role of Ig isotypes. I. Induction of contrasuppressor T cells for contact sensitivity responses by antibodies of the IgM, IgG1 and IgG3 isotypes. J Immunol 1988; 141:756–764
    [Google Scholar]
  26. Ptak W., Janeway C. A., Flood P. M. Immunoregulatory role of Ig isotypes. II. Activation of cells that block induction of contact sensitivity responses by antibodies of IgG2a and IgG2b isotypes. J Immunol 1988; 141:765–773
    [Google Scholar]
  27. Shwachman H., Kulczycki L. L. Long-term study of one hundred five patients with cystic fibrosis. Am J Dis Child 1958; 96:6–15
    [Google Scholar]
  28. Brasfield D., Hicks G., Soong S. -J., Peters J., Tiller R. Evaluation of scoring system of the chest radiograph in cystic fibrosis: a collaborative study. A J R 1980; 134:1195–1198
    [Google Scholar]
  29. Campbell M. E., Farmer S. W., Speert D. P. New selective medium for Pseudomonas aeruginosa with phenanthroline and 9-chloro-9-[4-(diethylamino)phenyl]-9, 10-dihydro-10-phenylacridine hydrochloride (C-390). J Clin Microbiol 1988; 26:1910–1912
    [Google Scholar]
  30. Ward K. H., Anwar H., Brown M. R. W., Wale J., Gowar J. Antibody response to outer-membrane antigens of Pseudomonas aeruginosa in human bum wound infection. J Med Microbiol 1988; 27:179–190
    [Google Scholar]
  31. Jefferis R., Reimer C. B., Skvaril F. Evaluation of monoclonal antibodies having specificity for human IgG sub-classes: results of an IUIS/WHO collaborative study. Immunol Lett 1985; 10:223–252
    [Google Scholar]
  32. Hamilton R. G. Human IgG subclass measurements in the clinical laboratory. Clin Chem 1987; 33:1707–1725
    [Google Scholar]
  33. Hussain R., Poindexter R. W., Wistar R., Reimer C. B. Use of monoclonal antibodies to quantify subclasses of human IgG. I. Development of two-site immunoenzymometric assays for total IgG subclass determinations. J Immunol Methods 1986; 93:89–96
    [Google Scholar]
  34. Nutman T. B., Withers A. S., Ottesen E. A. In vitro parasite antigen-induced antibody responses in human helminth infections. J Immunol 1985; 135:279–2799
    [Google Scholar]
  35. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  36. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem 1981; 117:307–310
    [Google Scholar]
  37. Towbin H., Gordon J. Immunoblotting and dot immunobinding—current status and outlook. J Immunol Methods 1984; 72:313–340
    [Google Scholar]
  38. Hancock R. E. W., Carey A. M. Outer membrane of Pseudomonas aeruginosa: heat-and 2-mercaptoethanol-modifiable proteins. J Bacteriol 1979; 140:902–910
    [Google Scholar]
  39. Hankins R. W., Black F. L. Western blot analyses of measles virus antibody in normal persons and in patients with multiple sclerosis, subacute sclerosing panencephalitis, or atypical measles. J Clin Microbiol 1986; 24324–329
    [Google Scholar]
  40. Sampson J. S., Plikaytis B. B., Wilkinson H. W. Immunologic response of patients with legionellosis against major protein-containing antigens of Legionella pneumophila serogroup 1 as shown by immunoblot analysis. J Clin Microbiol 1986; 23:92–99
    [Google Scholar]
  41. Doggett R. G., Harrisonm G. M. Pseudomonas aeruginosa:immune status in patients with cystic fibrosis. Infect Immun 1972; 6:628–635
    [Google Scholar]
  42. Döring G., Høiby N. Longitudinal study of immune response to Pseudomonas aeruginosa antigens in cystic fibrosis. Infect Immun 1983; 42:197–201
    [Google Scholar]
  43. Van der Zee J. S., Van Swieten P., Aalberse R. C. Serologic aspects of IgG4 antibodies. 11. IgG4 antibodies form small, nonprecipitating immune complexes due to functional monovalency. J Immunol 1986; 137:3566–3571
    [Google Scholar]
  44. Van der Zee J. S., Van Swieten P., Aalberse R. C. Inhibition of complement activation by IgG4 antibodies. Clin Exp Immunol 1986; 64:415–422
    [Google Scholar]
  45. Beck C. S., Heiner D. G. Selective immunoglobulin G4 deficiency and recurrent infections of the respiratory tract. Am Rev Resp Dis 1981; 124:94–96
    [Google Scholar]
  46. Calvanico N. J., Ambegaonkar S. P., Schlueter D. P., Fink J. N. Immunoglobulin levels in bronchoalveolar lavage fluid from pigeon breeders. J Lab Clin Med 1980; 96:129–140
    [Google Scholar]
  47. Iskander R., Das P. K., Aalberse R. C. IgG4 antibodies in Egyptian patients with schistosomiasis. Ini Arch Allergy Appl Immun 1981; 66:200–207
    [Google Scholar]
  48. Stokes T. C., Turton C. W. G., Turner-Warwick M. A study of immunoglobulin G subclasses in patients with allergic bronchopulmonary aspergillosis. Clin Allergy 1981; II:209–215
    [Google Scholar]
  49. Ottesen E. A., Skvaril F., Tripathy S. P., Poindexter R. W., Hussain R. Prominence of IgG4 in the IgG antibody response to human filariasis. J Immunol 1985; 134:2707–2712
    [Google Scholar]
  50. Aalberse R. C., Dieges P. H., Knul-Bretlova V., Vooren P., Aalberse M., Van Leewen J. IgG4 as blocking antibody. Clin Rev Allergy 1983; 1:289–292
    [Google Scholar]
  51. Mansfield L. E., Le Dieux R., Lima J., Brown G. S. An inhibition method utilizing the laser nephelometer to measure human specific “blocking antibodies”. Ann Allergy 1980; 45:228–230
    [Google Scholar]
  52. Wilson P. B., Fairfield J. E. Subclass distribution of IgG anti-IgE autoantibodies. Monogr Allergy 1989; 26:176–183
    [Google Scholar]
  53. Urbanek R. IgG subclasses and subclass distribution in allergic disorders. Monogr Allergy 1988; 23:33–40
    [Google Scholar]
  54. Aalberse R. C., Van der Gaag R., Van Leeuwen J. Serologic aspects of IgG4 antibodies. I. Prolonged immunization results in an IgG4-restricted response. J Immunol 1983; 130:722–726
    [Google Scholar]
  55. Mizuno T. A novel peptidoglycan-associated lipoprotein found in the cell envelope of Pseudomonas aeruginosa and Escherichia coli. J Biochem 1979; 86:991–1000
    [Google Scholar]
  56. Hancock R. E. W., Irvin R. T., Costerton J. W., Carey A. M. Pseudomoas aeruginosa outer membrane: peptidoglycan associated proteins. J Bacteriol 1981; 145:628–631
    [Google Scholar]
  57. Sawada S., Kawamura T., Masuho Y. Immunoprotective human monoclonal antibodies against five major serotypes of Pseudomonas aeruginosa. J Gen Microbiol 1987; 133:3581–3590
    [Google Scholar]
  58. Shakib F., Stanworth D. R. Human IgG subclasses in health and disease. Part I. Ric Clin Lab 1980; 10:463–479
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-36-6-437
Loading
/content/journal/jmm/10.1099/00222615-36-6-437
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error