1887

Abstract

Summary

Heat shock proteins (HSP) are thought to play a role in the aetiology of autoimmune diseases, but are also common targets for the immune response to many infections. Patients recovering from systemic candidosis produce antibodies to HSP 90, both to species-specific epitopes and, more commonly, to epitopes shared with human HSP 90. One such autoreactive antibody was protective in a mouse model of systemic candidosis.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-36-6-367
1992-06-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/36/6/medmicro-36-6-367.html?itemId=/content/journal/jmm/10.1099/00222615-36-6-367&mimeType=html&fmt=ahah

References

  1. Lindquist S., Craig E. A. The heat-shock proteins. Arum Rev Genet 1988; 22:631–677
    [Google Scholar]
  2. Ellis J. Proteins as molecular chaperones. Nature 1987; 328:378–379
    [Google Scholar]
  3. Kaufmann S. H. E. Heat shock proteins and the immune response. Immunol Today 1990; 11:129–136
    [Google Scholar]
  4. Cohen I. R. Microbial heat-shock protein and autoimmune diseases. In Neu H. C. (ed) New antibacterial strategies Edinburgh: Churchill Livingstone; 1990263–268
    [Google Scholar]
  5. Cohen I. R., Young D. B. Autoimmunity, microbial immunity and the immunological homunculus. Immunol Today 1991; 12:105–110
    [Google Scholar]
  6. Matthews R. C., Burnie J. P., Tabaqchali S. Immunoblot analysis of the serological response in systemic candidiasis. Lancet 1984; 2:1415–1418
    [Google Scholar]
  7. Matthews R. C., Burnie J. P. Cloning of a DNA sequence encoding a major fragment of the 47 kilodalton stress protein homologue of Candida albicans. FEMS Microbiol Lett 1989; 60:25–30
    [Google Scholar]
  8. Bumie J. P., Matthews R. C. Heat shock protein 88 and Aspergillus infection. J Clin Microbiol 1991; 29:2099–2106
    [Google Scholar]
  9. Reichart C. M., Kelly V. L., Machert A. M. Pathogenic features of AIDS. In DeVita V. T., Heilman S., Rosenburg S. A. (eds) AIDS, etiology, diagnosis, treatment, and prevention Philadelphia: Lippincott; 1985161–184
    [Google Scholar]
  10. Eales L.-J., Parkin J. M. Current concepts in the immunopathogenesis of AIDS and HIV infection. Br Med Bull 1988; 44:38–55
    [Google Scholar]
  11. Kirkpatrick C. H., Rich R. R., Bennett J. E. Chronic mucocutaneous candidiasis: model-building in cellular immunity. Ann Intern Med 1971; 74:955–978
    [Google Scholar]
  12. Edwards J. E. Invasive Candida infections. Evolution of a fungal pathogen. N Engl J Med 1991; 324:1060–1062
    [Google Scholar]
  13. Horn R., Wong B., Kiehn T. E., Armstrong D. Fungemia in a cancer hospital: changing frequency, earlier onset, and results of therapy. Rev Infect Dis 1985; 7:646–655
    [Google Scholar]
  14. Matthews R. C., Bumie J. P., Tabaqchali S. Isolation of immuno dominant antigens from sera of patients with systemic candidiasis and characterisation of serological response to Candida albicans. J Clin Microbiol 1987; 25:230–237
    [Google Scholar]
  15. Bumie J. P., Odds F. C., Lee W., Webster C., Williams J. D. Outbreak of systemic Candida albicans in intensive care unit caused by cross infection. BMJ 1985; 290:746–748
    [Google Scholar]
  16. Bumie J. P., Matthews R. C., Lee W. Four outbreaks of nosocomial systemic candidosis. Epidemiol Infect 1987; 99:201–211
    [Google Scholar]
  17. Lee W., Bumie J., Matthews R. Fingerprinting Candida albicans. J Immunol Methods 1986; 93:177–182
    [Google Scholar]
  18. Matthews R., Bumie J. Assessment of DNA fingerprinting for rapid identification of outbreaks of systemic candidiasis. BMJ 1989; 298:354–357
    [Google Scholar]
  19. Bumie J. P., Lee W., Williams J. D., Matthews R. C., Odds F. C. Control of an outbreak of systemic Candida albicans. BMJ 1985; 291:1092–1093
    [Google Scholar]
  20. Matthews R., Bumie J., Smith D. Candida and AIDS: evidence for protective antibody. Lancet 1988; 2:263–266
    [Google Scholar]
  21. Cutler J. E. Acute systemic candidiasis in normal and congenitally thymic-deficient (nude) mice. J Reticuloendothel Soc 1976; 19:121–124
    [Google Scholar]
  22. Rogers T. J., Balish E., Manning D. D. The role of thymus-dependent cell-mediated immunity in resistance to experimental disseminated candidiasis. J Reticuloendothel Soc 1976; 20:291–298
    [Google Scholar]
  23. Giger D. K., Domer J. E., Moser S. A., McQuitty J. T. Experimental murine candidiasis; pathological and immune responses in T-lymphocyte-depleted mice. Infect Immtm 1978; 21:729–737
    [Google Scholar]
  24. Mourad S., Friedman L. Passive immunisation of mice against Candida albicans. Sabouraudia 1968; 6:103–105
    [Google Scholar]
  25. Pearsall N. N., Adams B. L., Bunni R. Immunologic responses to Candida albicans. III. Effects of passive transfer of lymphoid cells or serum on murine candidiasis. J Immunol 1978; 120:1176–1180
    [Google Scholar]
  26. Neale T. J., Muir J. C., Drake B. The immunochemical characterisation of circulating immune complex constituents in Candida albicans osteomyelitis by isoelectric focusing, immunoblot, and immunoprint. Aust NZ J Med 1987; 17:201–209
    [Google Scholar]
  27. Ferreira R. P., Yu B., Niki Y., Armstrong D. Detection of Candida antigenuria in disseminated candidiasis by immunoblotting. J Clin Microbiol 1990; 28:1075–1078
    [Google Scholar]
  28. Strockbine N. A., Largen M. T., Zweibel S. M., Buckley H. R. Identification and molecular weight characterisation of antigens from Candida albicans that are recognised by human sera. Infect Immun 1984; 43:715–721
    [Google Scholar]
  29. Mason A. B., Brandt M. E., Buckley H. R. Enolase activity associated with a C. albicans cytoplasmic antigen. Yeast 1989 5 Special issue S231–S239
    [Google Scholar]
  30. Strockbine N. A., Largen M. T., Buckley H. R. Production and characterisation of three monoclonal antibodies to Candida albicans proteins. Infect Immun 1984; 43:1012–1018
    [Google Scholar]
  31. Matthews R. C. HSP 90, yeasts and Corynebacterium jeikeium. Epidemiol Infect 1991; 107:273–283
    [Google Scholar]
  32. Matthews R. C., Bumie J. P., Lee W. The application of epitope mapping to the development of a new serological test for systemic candidosis. J Immunol Methods 1991; 143:73–79
    [Google Scholar]
  33. Picard D., Khursheed B., Garabedian M. J., Fortin M. G., Lindquist S., Yamanoto K. R. Reduced levels of hsp 90 compromise steroid receptor action in vivo. Nature 1990; 348:166–168
    [Google Scholar]
  34. Burford-Mason A. P., Matthews R. C., Williams J. R. B. Transient abrogation of immunosuppression in a patient with chronic mucocutaneous candidiasis following vaccination with Candida albicans. J Infect 1987; 14:147–157
    [Google Scholar]
  35. Bumie J. P., Matthews R. C., Watson J. G., Milligan D. W., Tabaqch ali S. Analysis of the antibody response developing in an infant with Candida albicans meningitis. J Infect 1986; 12:79–83
    [Google Scholar]
  36. Matthews R. C., Bumie J. P., Howat D., Rowland T., Walton F. Auto antibody to heat shock protein 90 can mediate protection against systemic candidosis. Immunology 1991; 74:20–24
    [Google Scholar]
  37. Reading D. S., Hallberg R. L., Myers A. M. Characterisation of the yeast HSP60 gene coding for a mitochondrial assembly factor. Nature 1989; 337:655–659
    [Google Scholar]
  38. Ivanyi L., Ivanyi J. Elevated antibody levels to mycobacterial 65-kDa stress protein in patients with superficial candidiasis. J Infect Dis 1990; 162:519–522
    [Google Scholar]
  39. Matthews R. C., Bumie J. P., Fox A. The diagnostic and therapeutic potential of a monoclonal antibody to the 60-kilodalton nuclear antigen of Candida albicans. Serodiag Immunother 1989; 3:75–86
    [Google Scholar]
  40. Watson J. D. Leprosy: understanding protective immunity. Immunol Today 1989; 10:218–221
    [Google Scholar]
  41. Geysen H. M., Rodda S. J., Mason T. J., Tribbick G., Schoofs P. G. Strategies for epitope analysis using peptide synthesis. J Immunol Methods 1987; 102:259–274
    [Google Scholar]
  42. Lamb J. R., Bal V., Mendez-Samperio P. Stress proteins may provide a link between the immune response to infection and autoimmunity. Int Immunol 1989; 1:191–196
    [Google Scholar]
  43. Munk M. E., Schoel B., Modrow S., Karr R. W., Young R. A., Kaufmann S. H. E. T-lymphocytes from healthy individuals with specificity to self-epitopes shared by the mycobacterial and human 65-kilodalton heat shock protein. J Immunol 1989; 143:2844–2849
    [Google Scholar]
  44. Jaijour W. N., Jeffries B. D., Davis J. S., Welch W. J., Mimura J., Winfield J. Autoantibodies to human stress proteins. Arthritis Rheum 1991; 34:1133–1138
    [Google Scholar]
  45. Matthews R. C., Bumie J. Diagnosis of systemic candidiasis by an enzyme-linked dot immunobinding assay for a circulating immunodominant 47-kilodalton antigen. J Clin Microbiol 1988; 26:459–463
    [Google Scholar]
  46. Gustafsson J.-A., Wikström A.-C., Denis M. The non-activated glucocorticoid receptor: structure and activation. J Steroid Biochem 1988; 34:53–62
    [Google Scholar]
  47. Rebbe N. F., Ware J., Bertina R. M., Modrich P., Stafford D. W. Nucleotide sequence of a cDNA for a member of the human 90-kDa heat-shock protein family. Gene 1987; 53:235–245
    [Google Scholar]
  48. Ziegler E. J., Fisher C. J., Sprung C. L. Treatment of gram negative bacteremia and septic shock with HA-1 A human monoclonal antibody against endotoxin. N Engl J Med 1991; 324:429–436
    [Google Scholar]
  49. Hardesty B., Kramer G. The 90,000 dalton heat shock protein, a lot of smoke but no function as yet. Biochem Cell Biol 1989; 67:749–750
    [Google Scholar]
  50. Brunt S. A., Riehl R., Silver J. C. Steroid hormone regulation of the Achyla ambisexualis 85-kilodalton heat shock protein, a component of the Achyla steroid receptor complex. Mol Cell Biol 1990; 10:273–281
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-36-6-367
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error