1887

Abstract

Summary

The virulence of type c when inoculated intracisternally (i.c.) into rabbits was evaluated. Rabbits are relatively resistant to infection with type b, such that inocula of the order of 10 cfu are required to produce meningitis in this model. In contrast, fatal meningitis was produced in this study when 10 cfu of a type-c strain were injected i.c. into rabbits. Numbers of bacteria in cerebrospinal fluid (CSF) of control (untreated) animals generally increased to 10 cfu/ml. Increases in white blood cells, protein and lactate in the CSF were similar to those which had been observed during meningitis due to in rabbits. The infection was amenable to therapy with ampicillin 50 mg/kg given intravenously 12 h after infection. Numbers of bacteria in CSF were reduced to 2.2 × 10 cfu/ml (SEM 0.2 × 10) at 8 h after treatment with a single dose of ampicillin. Two doses of ampicillin, given 12 and 20 h after infection, significantly increased the mean survival time. In contrast to previous experimental studies with rabbits, the penetration of ampicillin into the CSF was high—46 (SEM 10)% of the blood level. Since considerable replication of type c occurred within the CSF in this model, the nature of the meningeal damage produced was likely to be similar to that which takes place in man. Hence, type c meningitis in rabbits may provide a useful model in which therapeutic and other experimental studies of meningitis can be performed.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-36-5-312
1992-05-01
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/jmm/36/5/medmicro-36-5-312.html?itemId=/content/journal/jmm/10.1099/00222615-36-5-312&mimeType=html&fmt=ahah

References

  1. Dacey R. G., Sande M. A. Effect of probenecid on cerebrospinal fluid concentrations of penicillin and cephalosporin derivatives. Antimicrob Agents Chemother 1974; 6:437–441
    [Google Scholar]
  2. Scheld W. M. Experimental animal models of bacterial meningitis. In Zak O., Sande M. A. (eds) Experimental models in antimicrobial chemotherapy vol 2 London: Academic Press; 1986139–186
    [Google Scholar]
  3. Bodine J. A., Strausbaugh L. J., Sande M. A. Ampicillin and anester in experimental Hemophilus influenzae meningitis. Clin Pharmacol Ther 1976; 20:727–732
    [Google Scholar]
  4. Strausbaugh L. J., Mandaleris C. D., Sande M. A. Cefamandole and ampicillin therapy in experimental Haemophilus influenzae meningitis. J Infect Dis 1977; 135:210–216
    [Google Scholar]
  5. Perfect J. R., Lang S. D. R., Durack D. T. Comparison of cotrimox-azole, ampicillin, and chloramphenicol in treatment of experimental Haemophilus influenzae type b meningitis. Antimicrob Agents Chemother 1980; 17:43–48
    [Google Scholar]
  6. McCracken G. H., Nelson J. D., Grimm L. Pharmacokinetics and bacteriological efficacy of cefoperazone, cefuroxime, ceftriaxone, and moxalactam in experimental Streptococcus pneumoniae and Haemophilus influenzae meningitis. Antimicrob Agents Chemother 1982; 21:262–267
    [Google Scholar]
  7. Scheld W. M., Brodeur J. P., Sande M. A., Alliegro G. M. Comparison of cefoperazone with penicillin, ampicillin, gentamicin, and chloramphenicol in the therapy of experimental meningitis. Antimicrob Agents Chemother 1982; 22:652–656
    [Google Scholar]
  8. Sakata Y., McCracken G. H., Thomas M. L., Olsen K. D. Pharmacokinetics and therapeutic efficacy of imipenem, ceftazidime, and ceftriaxone in experimental meningitis due to an ampicillin- and chloramphenicol-resistant strain of Haemophilus influenzae type b. Antimicrob Agents Chemother 1984; 25:29–32
    [Google Scholar]
  9. Syrogiannopoulos G. A., Al-Sabbagh A., Olsen K. D., McCracken G. H. Pharmacokinetics and bacteriological efficacy of ticarcillin-clavulanic acid (Timentin) in experimental Escherichia coli K-l and Haemophilus influenzae type b meningitis. Antimicrob Agents Chemother 1987; 31:1296–1300
    [Google Scholar]
  10. Syrogiannopoulos G. A., Olsen K. D., Reisch J. S., McCracken G. H. Dexamethasone in the treatment of experimental Haemophilus influenzae type b meningitis. J Infect Dis 1987; 155:213–219
    [Google Scholar]
  11. Mustafa M. M., Ramilo O., Olsen K. D. Tumor necrosis factor in mediating experimental Haemophilus influenzae type b meningitis. J Clin Invest 1989; 84:1253–1259
    [Google Scholar]
  12. Schneerson R., Robbins J. B. Age-related susceptibility to Haemophilus influenzae type b disease in rabbits. Infect Immun 1971; 4:397–401
    [Google Scholar]
  13. Berg U., Bohlin B.-H., Malmborg A.-S. Neonatal meningitis caused by Haemophilus influenzae type c. Scand J Infect Dis 1981; 13:155–157
    [Google Scholar]
  14. Neihart R. E., Hodges G. R., Papasian C. J., Rengachary S. S. Nosocomial Hemophilus influenzae type c meningitis in an adult. Diagn Microbiol Infect Dis 1987; 6:69–71
    [Google Scholar]
  15. Zwahlen A., Winkelstein J. A., Moxon E. R. Surface determinants of Haemophilus influenzae pathogenicity: Comparative virulence of capsular transformants in normal and complement-depleted rats. J Infect Dis 1983; 148:385–394
    [Google Scholar]
  16. Moxon E. R. Hemophilus influenzae. In Mandell G. L., Douglas R. G., Bennett J. E. (eds) Principles and practice of infectious diseases 2nd edn New York: John Wiley and Sons Inc; 19851274–1279
    [Google Scholar]
  17. Loeb M. R., Smith D. H. Outer membrane protein composition in disease isolates of Haemophilus influenzae-Pathogenic and epidemiological implications. Infect Immun 1980; 30:709–717
    [Google Scholar]
  18. Zamze S. E., Moxon E. R. Composition of the lipopolysaccharide from different capsular serotype strains of Haemophilus influenzae. J Gen Microbiol 1987; 133:1443–1451
    [Google Scholar]
  19. Spector R., Lorenzo A. V. Inhibition of penicillin transport from the cerebrospinal fluid after intracistemal inoculation of bacteria. J Clin Invest 1974; 54:316–325
    [Google Scholar]
  20. Tuomanen E., Tomasz A., Hengstler B., Zak O. The relative role of bacterial cell wall and capsule in the induction of inflammation in pneumococcal meningitis. J Infect Dis 1985; 151:535–540
    [Google Scholar]
  21. Rubin L. G. Comparison of in vivo and in vitro multiplication rates of Haemophilus influenzae type b. Infect Immun 1986; 52:911–913
    [Google Scholar]
  22. Syrogiannopoulos G. A., Hansen E. J., Erwin A. L. Haemophilus influenzae type b lipooligosaccharide induces meningeal inflammation. J Infect Dis 1988; 157:237–244
    [Google Scholar]
  23. Mustafa M. M., Ramilo O., Syrogiannopoulos G. A., Olsen KD., McCracken G. H., Hansen E. J. Induction of meningeal inflammation by outer membrane vesicles of Haemophilus influenzae type b. J Infect Dis 1989; 159:917–922
    [Google Scholar]
  24. Kadurugamuwa J. L., Hengstler B., Zak O. Cerebrospinal fluid protein profile in experimental pneumococcal meningitis and its alteration by ampicillin and anti-inflammatory agents. J Infect Dis 1989; 159:26–34
    [Google Scholar]
  25. Kadurugamuwa J. L., Hengstler B., Bray M. A., Zak O. Inhibition of complement-factor-5a-induced inflammatory reactions by prostaglandin E, in experimental meningitis. J Infect Dis 1989; 160:715–719
    [Google Scholar]
  26. Saukkonen K., Sande S., Cioffe C. The role of cytokines in the generation of inflammation and tissue damage in experimental gram-positive meningitis. J Exp Med 1990; 171:439–448
    [Google Scholar]
  27. Moxon R. E., Smith A. L., Averill D. R. Brain carbohydrate metabolism during experimental Haemophilus influenzae meningitis. Pediatr Res 1979; 13:52–59
    [Google Scholar]
  28. Kayser F. H., Morenzoni G., Santanam P. The 2nd European collaborative study on the frequency of antimicrobial resistance in Haemophilus influenzae. Eur J Clin Microbiol Infect Dis 1990; 9:810–817
    [Google Scholar]
  29. Tauber M. G., Khayam-Bashi H., Sande M. A. Effects of ampicillin and corticosteroids on brain water content, cerebrospinal fluid pressure, and cerebrospinal fluid lactate levels in experimental pneumococcus meningitis. J Infect Dis 1985; 151:528–534
    [Google Scholar]
  30. Decazes J. M., Ernst J. D., Sande M. A. Correlation of in vitro time-kill curves and kinetics of bacterial killing in cerebrospinal fluid during ceftriaxone therapy of experimental Escherichia coli meningitis. Antimicrob Agents Chemother 1983; 24:463–167
    [Google Scholar]
  31. Norris S., Nightingale C. H., Mandell G. L. Tables of antimicrobial pharmacology. In Mandell G. L., Douglas R. G., Bennett J. E. (eds) Principles and practice of infectious diseases 3rd edn New York: Churchill Livingstone; 1990434–460
    [Google Scholar]
  32. Foulds G., McBride T. J., Knirsch A. K., Rodriguez W. J., Khan W. N. Penetration of sulbactam and ampicillin into cerebrospinal fluid of infants and young children with meningitis. Antimicrob Agents Chemother 1987; 31:1703–1705
    [Google Scholar]
/content/journal/jmm/10.1099/00222615-36-5-312
Loading
/content/journal/jmm/10.1099/00222615-36-5-312
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error